The Temporary Importance of Role Models for Women's Political Representation – Supporting Information

Fabrizio Gilardi¹

SI1 Women's representation in Switzerland

1959	Vaud, Neuchâtel
1960	Genève
1966	Basel-Stadt
1968	Basel-Landschaft
1969	Ticino, Zurich (municipal level)
1970	Valais, Zurich (cantonal level)
1971	Aargau, Fribourg, Schaffhausen, Zug, Glarus, Solothurn, Luzern,
	Bern, Thurgau, Switzerland (federal level)
1972	St. Gallen, Uri, Schwyz, Graubünden, Nidwalden, Obwalden
1977	Jura (at founding of the canton)
1989	Appenzell Ausserrhoden
1990	Appenzell Innerrhoden

Table SI1: The introduction of women's suffrage in Switzerland.

¹Department of Political Science, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland. Email: gilardi@ipz.uzh.ch; URL: http://www.fabriziogilardi.org/.

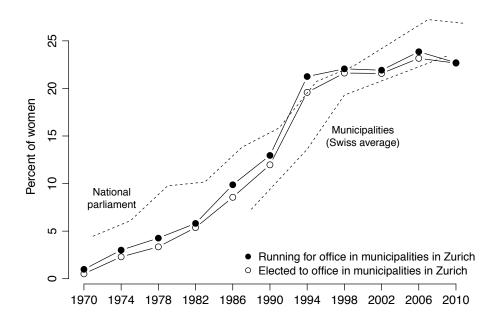


Figure SI1: Average percent of women running for and elected to office in the municipalities of the canton of Zurich, with the percent of women in the Swiss national parliament and the average percent of women in the executives of Swiss municipalities (source: Ladner, 2011, 78).

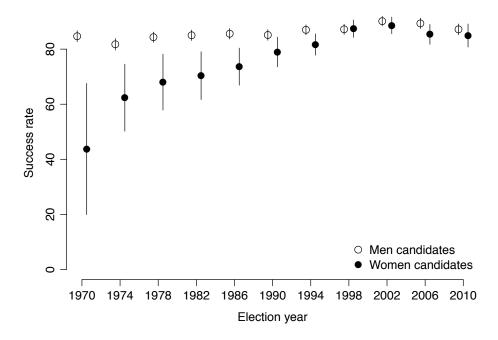


Figure SI2: Election rate of female and male candidates, 1970-2010.

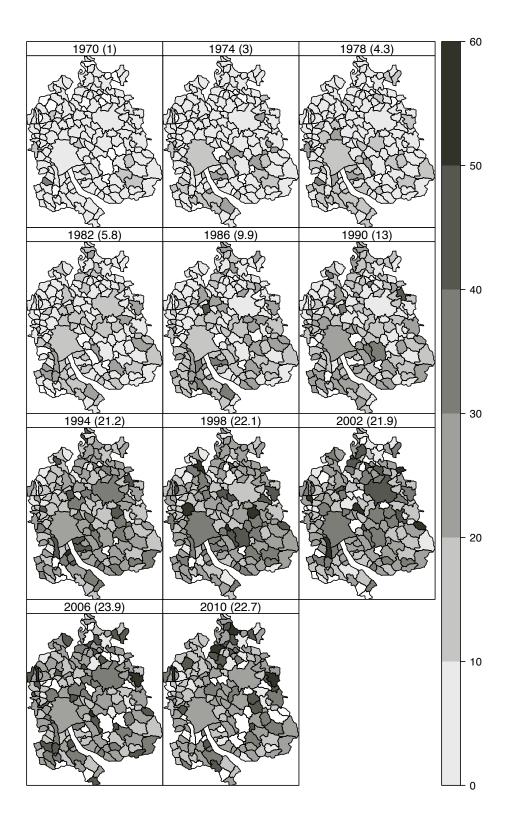


Figure SI3: Geographic distribution of the percent of women candidates, 1970–2010. Cantonal averages in parentheses. The degree of spatial autocorrelation is shown in Figure 1.

Canton	Voting system	Ballot type
Zug	PR	Ballot
Ticino	PR	Ballot
Zurich	MVS	Ballot
Glarus	MVS	Ballot
Basel-Stadt	MVS	Ballot
Schaffhausen	MVS	Ballot
St. Gallen	MVS	Ballot
Vaud	MVS	Ballot
Genève	MVS	Ballot
Uri	MVS	(municipal)
Schwyz	MVS	(municipal)
Obwalden	MVS	(municipal)
Appenzell Ausserrhoden	MVS	(municipal)
Appenzell Innerrhoden	MVS	(municipal)
Aargau	MVS	(municipal)
Luzern	(municipal)	Ballot
Fribourg	(municipal)	Ballot
Solothurn	(municipal)	Ballot
Basel-Landschaft	(municipal)	Ballot
Valais	(municipal)	Ballot
Jura	(municipal)	Ballot
Bern	(municipal)	(municipal)
Nidwalden	(municipal)	(municipal)
Graubünden	(municipal)	(municipal)
Thurgau	(municipal)	(municipal)
Neuchâtel	(municipal)	(municipal)

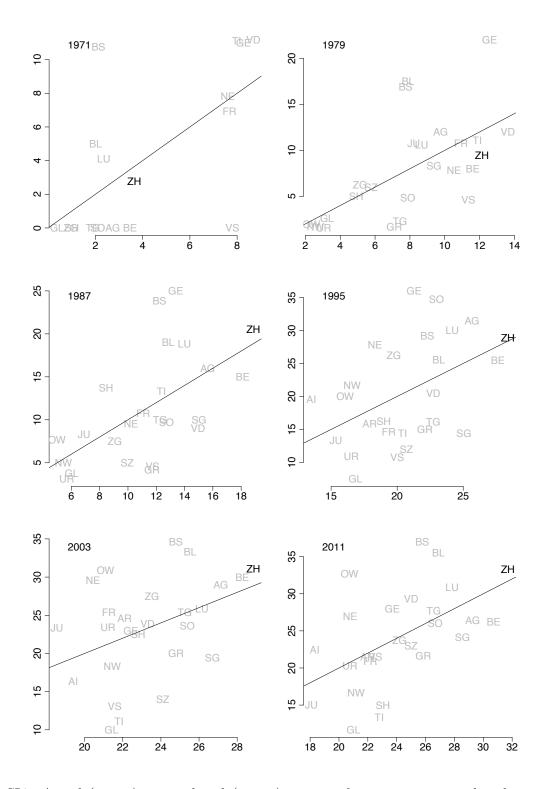
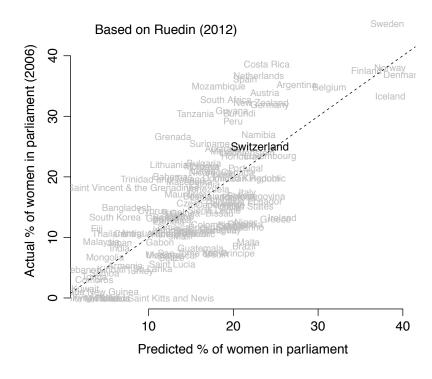
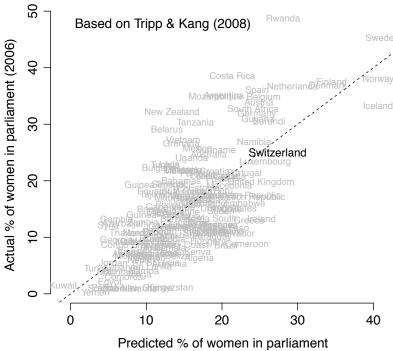
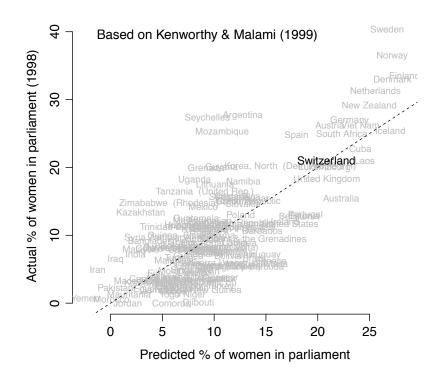





Figure SI4: Actual (y-axis) vs. predicted (x-axis) percent of women in cantonal parliament. Regression equation: Percent women = $\beta_0 + \beta_1 \times log(Population) + \beta_2 \times German speaking$.

SI2 Switzerland in comparative perspective

SI3 Descriptive statistics and variable description

Min.	Max.	Mean	S.D.	N
0.00	7.00	1.15	1.08	1531
0.00	2.25	0.72	0.57	1531
0.00	4.00	0.77	0.85	1531
0.00	4.00	0.46	0.67	1531
0.00	10.00	3.45	1.46	1531
0.00	7.00	1.00	1.07	1531
4.00	11.00	6.38	1.42	1531
4.00	24.00	7.73	2.30	1531
0.23	0.47	0.34	0.04	1531
0.00	1.77	0.31	0.20	1531
1.70	3.78	3.27	0.32	1531
5.36	12.89	7.94	1.17	1531
17.27	68.67	37.54	10.46	1531
80.20	125.50	112.93	12.53	1531
0.00	1.00	0.72	0.45	1531
0.00	1.00	0.25	0.43	1531
	0.00 0.00 0.00 0.00 0.00 0.00 4.00 4.00 0.23 0.00 1.70 5.36 17.27 80.20 0.00	0.00 7.00 0.00 2.25 0.00 4.00 0.00 4.00 0.00 10.00 0.00 7.00 4.00 11.00 4.00 24.00 0.23 0.47 0.00 1.77 1.70 3.78 5.36 12.89 17.27 68.67 80.20 125.50 0.00 1.00	0.00 7.00 1.15 0.00 2.25 0.72 0.00 4.00 0.77 0.00 4.00 0.46 0.00 10.00 3.45 0.00 7.00 1.00 4.00 11.00 6.38 4.00 24.00 7.73 0.23 0.47 0.34 0.00 1.77 0.31 1.70 3.78 3.27 5.36 12.89 7.94 17.27 68.67 37.54 80.20 125.50 112.93 0.00 1.00 0.72	0.00 7.00 1.15 1.08 0.00 2.25 0.72 0.57 0.00 4.00 0.77 0.85 0.00 4.00 0.46 0.67 0.00 10.00 3.45 1.46 0.00 7.00 1.00 1.07 4.00 11.00 6.38 1.42 4.00 24.00 7.73 2.30 0.23 0.47 0.34 0.04 0.00 1.77 0.31 0.20 1.70 3.78 3.27 0.32 5.36 12.89 7.94 1.17 17.27 68.67 37.54 10.46 80.20 125.50 112.93 12.53 0.00 1.00 0.72 0.45

Number of female candidates in the previous election. This is the lagged dependent variable. Results are robust to coding this variable as a factor (i.e., with n-1 dummies, where n is the number

- of levels of the variable) (Table SI16, SI6).
- Number of female incumbent candidates. This variable increases the number of women candidates mechanically, but it should be included because women incumbents are likely less sensitive to the success of women in other municipalities. The results are robust to coding this variable as a factor (i.e., with n-1 dummies, where n is the number of levels of the variable) (Table SI16, SI6).
- Number of male incumbent candidates. The more incumbents run for office, the fewer women are likely to jump in the race. The results are robust to coding this variable as a factor (i.e., with n-1 dummies, where n is the number of levels of the variable) (Table SI16, SI6).
- Number of women elected in the same municipality in the previous election. Controlling for the number of women incumbent candidates, more women are likely to run for office when more women were already elected. The results are robust to coding this variable as a factor (i.e., with n-1 dummies, where n is the number of levels of the variable) (Table SI16, SI6).
- Number of seats at stake. The number of (women) candidates likely increases with the number of seats.
- **Total number of candidates.** The number of women candidates mechanically increases with the overall number of candidates.
- Referenda on gender equality. Average support for a series of national and cantonal referenda on gender equality issues held between 1981 and 2010. This variable measures the extent to which a municipality's voters hold progressive views on the role of women in society.
- Votes for women in cantonal elections. Average percent of votes for women candidates in the cantonal election prior to the municipal election. This variable measures the extent to which a municipality's voters are willing to support female politicians.
- Distance from Zurich. Distance from the canton's capital city, logged.
- Conservative party. Support for the Swiss People's Party (a conservative party) at the cantonal elections prior to the municipal election.

SI4 Additional analyses

Table SI3: Number of *male* candidates as dependent variable (E3a).

Table SI4: Number of new female candidates as dependent variable (E3c) .

Table SI5: Number of *incumbent* female candidates as dependent variable (E3c).

Table SI6: Number of *new male* candidates as dependent variable (E3a, E3c).

Table SI7: Electoral performance of women as dependent variable (E3d).

Table SI8: Models including the distance from the nearest women's group.

Figure SI5: Effect of an additional woman elected in the same municipality (E3b).

Figure SI6: Effect of being ten minutes closer to the next women's group on the number of female candidates.

		DV: Nr. male	e candidates	
(Intercept)	1.04 (0.36)**	1.15 (0.40)**	1.15 (0.37)**	1.10 (0.40)**
Spatial lag	0.00(0.02)	-0.02(0.03)	0.00(0.02)	0.02(0.04)
Nr. σ elected $(t-1)$	0.01(0.02)	0.01(0.02)	-0.02(0.02)	-0.02(0.02)
Nr. Q incumbent cand.	$-0.08 (0.02)^{***}$	$-0.08 (0.02)^{***}$	$-0.08 (0.02)^{***}$	$-0.08 (0.02)^{***}$
Nr. $\vec{\sigma}$ incumbent cand.	0.02(0.01)	0.02(0.01)	0.01(0.01)	0.01(0.01)
Nr. Q cand. $(t-1)$	0.00(0.01)	0.00(0.01)	0.00(0.01)	0.00(0.01)
Nr. seats	0.01(0.02)	0.01(0.02)	0.01(0.02)	0.01(0.02)
Total nr. candidates	$0.10(0.01)^{***}$	$0.10 (0.01)^{***}$	$0.10(0.01)^{***}$	$0.10 (0.01)^{***}$
Spatial lag \times 1978		0.01(0.05)		-0.02(0.06)
Spatial lag \times 1982		0.02(0.05)		-0.01(0.06)
Spatial lag \times 1986		0.02(0.05)		-0.03(0.07)
Spatial lag \times 1990		0.02(0.05)		-0.03(0.06)
Spatial lag \times 1994		0.01(0.06)		-0.03(0.07)
Spatial lag \times 1998		0.02(0.07)		-0.05(0.08)
Spatial lag \times 2002		0.07(0.07)		0.00(0.08)
Spatial lag \times 2006		$0.06 \ (0.06)$		0.01(0.07)
Spatial lag \times 2010		0.05(0.07)		0.01(0.08)
Nr. σ elected $(t-1) \times 1978$			0.02(0.02)	0.02(0.03)
Nr. σ elected $(t-1) \times 1982$			0.02(0.03)	0.02(0.03)
Nr. σ elected $(t-1) \times 1986$			0.02(0.03)	0.03(0.03)
Nr. \circlearrowleft elected $(t-1) \times 1990$			0.03(0.03)	0.04(0.03)
Nr. σ elected $(t-1) \times 1994$			0.02(0.03)	0.03(0.03)
Nr. σ elected $(t-1) \times 1998$			0.05 (0.03)	0.06(0.04)
Nr. \circlearrowleft elected $(t-1) \times 2002$			0.06(0.03)	0.06(0.04)
Nr. σ elected $(t-1) \times 2006$			0.05(0.03)	0.05(0.04)
Nr. σ elected $(t-1) \times 2010$			0.04(0.03)	0.04(0.04)
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Deviance	134.04	132.09	127.65	126.74
Num. obs.	1531	1531	1531	1531
***p < 0.001, **p < 0.01, *p <	0.05			

Table SI3: Replication of Table 1, with the number of male candidates as the dependent variable. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DV: Nr. new female candidates			
	(5)	(6)	(7)	
(Intercept)	$-4.27(1.10)^{***}$	$-3.93(1.37)^{**}$	-2.95(2.49)	
Spatial lag	8.72 (2.60)***	$9.19 (2.68)^{***}$	-16.46(25.44)	
Nr. Q elected $(t-1)$	0.44(0.61)	$1.83 (0.74)^*$	0.06(0.21)	
Nr. Q incumbent cand. $(t-1)$	$-0.60 (0.06)^{***}$		$-0.42 (0.14)^{**}$	
Nr. σ incumbent cand. $(t-1)$	$-0.16 (0.03)^{***}$	$-0.13 (0.03)^{***}$	$-0.24 (0.05)^{***}$	
Nr. Q cand. $(t-1)$	-0.02(0.05)	-0.04(0.07)	0.01(0.09)	
Nr. seats	0.02(0.04)	0.00(0.05)	0.04(0.08)	
Total nr. candidates	0.20 (0.02)***	$0.18 (0.02)^{***}$	$0.27 (0.03)^{**}$	
Spatial lag \times 1978	$-5.98(2.73)^*$	$-6.40(2.80)^*$	$17.81\ (25.57)$	
Spatial lag \times 1982	$-7.78(2.67)^{**}$	$-8.10 (2.74)^{**}$	$16.93\ (25.53)$	
Spatial lag \times 1986	$-8.07(2.62)^{**}$	$-8.60(2.69)^{**}$	16.78(25.47)	
Spatial lag \times 1990	$-8.38 (2.60)^{**}$	$-8.83(2.67)^{***}$	16.86(25.44)	
Spatial lag \times 1994	$-8.56 (2.60)^{***}$	$-9.07(2.67)^{***}$	16.89(25.44)	
Spatial lag \times 1998	$-8.61 (2.61)^{***}$	$-8.64 (2.70)^{**}$	$16.38\ (25.43)$	
Spatial lag \times 2002	$-8.91 (2.61)^{***}$	$-9.32(2.69)^{***}$	16.27(25.43)	
Spatial lag \times 2006	$-8.61(2.61)^{***}$	$-9.11(2.69)^{***}$	$16.82\ (25.42)$	
Spatial lag \times 2010	$-8.73(2.61)^{***}$	$-9.30 (2.69)^{***}$	$16.34\ (25.44)$	
Nr. Q elected $(t-1) \times 1978$	-0.42(0.71)	-1.48(1.04)	-14.59 (1036.48)	
Nr. Q elected $(t-1) \times 1982$	-0.50 (0.67)	$-1.70 (0.80)^*$	-14.90 (1358.88)	
Nr. Q elected $(t-1) \times 1986$	-0.19(0.63)	$-1.53 (0.77)^*$	0.55 (0.66)	
Nr. Q elected $(t-1) \times 1990$	-0.38(0.62)	$-1.64 (0.77)^*$	0.13(0.37)	
Nr. Q elected $(t-1) \times 1994$	-0.45(0.61)	$-1.73 (0.75)^*$	0.03(0.35)	
Nr. Q elected $(t-1) \times 1998$	-0.36(0.61)	$-1.90 (0.75)^*$	0.15(0.26)	
Nr. Q elected $(t-1) \times 2002$	-0.29(0.61)	$-1.83 (0.76)^*$	0.05 (0.26)	
Nr. Q elected $(t-1) \times 2006$	-0.39(0.61)	$-1.74 (0.76)^*$	-0.24(0.24)	
Nr. Q elected $(t-1) \times 2010$	-0.44(0.61)	$-1.93 (0.75)^*$		
Connectivity matrix	Closest 20	Closest 20	Closest 20	
Nr. Q incumbent cand.	≥ 0	0	> 0	
Deviance	1105.27	625.28	445.11	
Num. obs.	1531	964	567	
***p < 0.001, **p < 0.01, *p < 0.01	05			

Table SI4: Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.

]	OV: Nr. female in	ncumbent candidat	es
(Intercept)	$-3.50 (1.31)^{**}$	$-4.17 (1.40)^{**}$	-18.17(480.07)	-18.22 (479.85)
Spatial lag	-0.23(0.16)	4.39(7.68)	-0.16(0.16)	1.15(12.80)
Nr. Q elected $(t-1)$	$0.83 (0.09)^{***}$	$0.82 (0.09)^{***}$	17.92 (480.07)	17.89 (479.85)
Nr. σ incumbent cand. $(t-1)$	-0.01(0.04)	-0.01(0.03)	-0.01(0.04)	-0.02(0.04)
Nr. Q cand. $(t-1)$	0.03(0.07)	0.04(0.07)	0.08(0.06)	0.08(0.07)
Nr. seats	$0.11 (0.06)^*$	0.08(0.06)	0.02(0.06)	0.03(0.06)
Total nr. candidates	$-0.08 (0.03)^{**}$	$-0.07 (0.03)^*$	-0.04(0.03)	-0.05(0.03)
Spatial lag \times 1978		-1.32(7.77)		-0.54(12.91)
Spatial lag \times 1982		-1.26(7.73)		0.78(12.84)
Spatial lag \times 1986		-3.62(7.70)		-1.98(12.80)
Spatial lag \times 1990		-4.47(7.69)		-1.59(12.80)
Spatial lag \times 1994		-3.97(7.68)		-1.13(12.79)
Spatial lag \times 1998		-4.80(7.68)		-1.26(12.80)
Spatial lag \times 2002		-4.74(7.68)		-1.24(12.79)
Spatial lag \times 2006		-4.87(7.68)		-1.47(12.79)
Spatial lag \times 2010		-4.62(7.69)		-1.28(12.80)
Nr. Q elected $(t-1) \times 1978$			-15.78(480.07)	-15.83(479.85)
Nr. Q elected $(t-1) \times 1982$			-16.03(480.07)	-16.30(479.85)
Nr. Q elected $(t-1) \times 1986$			-16.12(480.07)	-15.95(479.85)
Nr. Q elected $(t-1) \times 1990$			-16.91(480.07)	-16.82(479.85)
Nr. Q elected $(t-1) \times 1994$			-16.70(480.07)	-16.70(479.85)
Nr. Q elected $(t-1) \times 1998$			-17.36(480.07)	-17.35(479.85)
Nr. \bigcirc elected $(t-1) \times 2002$			-17.34(480.07)	-17.33(479.85)
Nr. \dot{Q} elected $(t-1) \times 2006$			-17.31(480.07)	-17.28(479.85)
Nr. \bigcirc elected $(t-1) \times 2010$			-17.37(480.07)	$-17.35\ (479.85)$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Deviance	735.28	709.23	625.56	620.09
Num. obs.	1531	1531	1531	1531
***n < 0.001 **n < 0.01 *n < 0.0	05			

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table SI5: Replication of Table SI4, with female incumbent candidates as the dependent variable. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DII II	1 11 1
	DV: Nr. new m	
(Intercept)	$0.12\ (0.59)$	0.07(0.59)
Spatial lag	$0.03\ (0.05)$	$0.03\ (0.05)$
Nr. o^{-1} elected $(t-1)$	-0.01 (0.03)	-0.01(0.03)
Nr. Q incumbent cand. $(t-1)$	$-0.15(0.03)^{***}$	$-0.16 (0.03)^{***}$
Nr. σ incumbent cand. $(t-1)$	$-0.29 (0.01)^{***}$	$-0.29 (0.01)^{***}$
Nr. σ cand. $(t-1)$	0.00(0.01)	0.00(0.01)
Nr. seats	0.04(0.03)	0.05 (0.03)
Total nr. candidates	$0.19(0.01)^{***}$	0.19 (0.01)***
Spatial lag \times 1978	-0.01 (0.08)	0.00(0.08)
Spatial lag \times 1982	0.01(0.09)	0.00(0.09)
Spatial lag \times 1986	-0.07(0.09)	-0.07(0.09)
Spatial lag \times 1990	-0.04(0.09)	-0.03(0.09)
Spatial lag \times 1994	-0.06(0.10)	-0.08(0.11)
Spatial lag \times 1998	-0.05(0.12)	-0.06(0.12)
Spatial lag \times 2002	-0.02(0.11)	-0.02(0.11)
Spatial lag \times 2006	0.03(0.10)	0.03(0.10)
Spatial lag \times 2010	-0.01(0.12)	0.01(0.12)
Nr. σ elected $(t-1) \times 1978$	0.03(0.04)	0.02(0.04)
Nr. σ elected $(t-1) \times 1982$	-0.01(0.05)	-0.01(0.05)
Nr. σ elected $(t-1) \times 1986$	0.03(0.05)	0.03(0.05)
Nr. σ elected $(t-1) \times 1990$	0.04(0.05)	0.04(0.05)
Nr. σ elected $(t-1) \times 1994$	0.00(0.05)	0.01(0.05)
Nr. σ elected $(t-1) \times 1998$	0.07(0.05)	0.07(0.05)
Nr. σ elected $(t-1) \times 2002$	0.07(0.05)	0.07(0.05)
Nr. σ elected $(t-1) \times 2006$	0.03(0.05)	0.03(0.05)
Nr. σ elected $(t-1) \times 2010$	0.05(0.06)	0.04(0.06)
Connectivity matrix	Closest 20	Closest 20
Nr. σ incumbent cand.	≥ 0	> 0
Deviance	504.70	500.50
Num. obs.	1531	1515
***p < 0.001, **p < 0.01, *p < 0.01	05	
- / - / -		

Table SI6: Replication of Table SI4, with new male candidates as the dependent variable. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DV: Nr. wom	nen elected	DV: Vote ratio	(women/men)
(Intercept)	$-2.83 (0.97)^{**}$	$-6.54 (1.38)^{***}$	0.54 (0.18)**	0.56 (0.17)**
Spatial lag	$10.04 (3.20)^{**}$	3.00(3.66)	0.94(0.51)	$1.01 (0.50)^*$
Nr. Q elected $(t-1)$	$0.06\ (0.05)$, ,	0.02(0.01)	,
Nr. Q elected $(t-1) > 0$	` ,	0.08(0.10)		$0.08 (0.02)^{***}$
Nr. Q incumbent cand.	$0.14 (0.05)^{**}$, ,	$0.09 (0.01)^{***}$	
Nr. Q incumbent cand. > 0	, ,	$0.25 (0.07)^{***}$, ,	$0.12 (0.01)^{***}$
Nr.	$-0.05 (0.02)^*$	$-0.10(0.02)^{***}$	$-0.01 (0.00)^{**}$	$-0.01 (0.00)^{**}$
Nr. Q cand.	$0.36 (0.03)^{***}$		$-0.02(0.01)^*$	0.00(0.01)
Nr. Q cand. > 0		$5.71 (1.00)^{***}$, ,	, ,
Nr. seats	$0.13 (0.03)^{***}$	$0.17(0.03)^{***}$	$0.02 (0.01)^{***}$	$0.02 (0.01)^{***}$
Spatial lag \times 1978	$-6.71(3.31)^*$	-2.28(3.79)	-0.54(0.53)	-0.63(0.51)
Spatial lag \times 1982	$-8.10(3.24)^*$	-2.56(3.71)	-0.65(0.52)	-0.78(0.50)
Spatial lag \times 1986	$-9.13(3.21)^{**}$	-2.92(3.68)	-0.86(0.51)	-0.93(0.50)
Spatial lag \times 1990	$-9.70(3.20)^{**}$	-3.00(3.67)	-0.93(0.51)	$-1.02 (0.50)^*$
Spatial lag \times 1994	$-10.18 (3.20)^{**}$	-2.93(3.66)	-0.93(0.51)	$-1.02 (0.50)^*$
Spatial lag \times 1998	$-10.13 (3.20)^{**}$	-2.89(3.66)	-0.97(0.51)	$-1.00(0.49)^*$
Spatial lag \times 2002	$-10.15 (3.20)^{**}$	-3.04(3.66)	-0.94(0.51)	$-0.99(0.49)^*$
Spatial lag \times 2006	$-10.30(3.20)^{**}$	-3.14(3.66)	-0.98(0.51)	$-1.05 (0.50)^*$
Spatial lag \times 2010	$-10.20(3.20)^{**}$	-3.03(3.67)	-0.91(0.51)	-0.96(0.50)
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Model	Poisson	Poisson	OLS	OLS
Deviance	566.85	323.52		
$Adj. R^2$			0.30	0.34
Num. obs.	1538	1538	1049	1049
***p < 0.001, **p < 0.01, *p <	< 0.05			

Table SI7: Poisson and OLS regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies

and full set of control variables included but not shown.

		Vr. female candid	lates
(Intercept)	$-2.59 (0.83)^{**}$	$-1.88 (0.84)^*$	$-2.71 (0.89)^{**}$
Spatial lag	0.09(0.11)	0.15(0.11)	$6.32 (2.59)^*$
Nr. Q elected $(t-1)$	0.05 (0.06)	$0.06 \ (0.06)$	0.07(0.06)
Nr. Q incumbent cand. $(t-1)$	0.24 (0.04)***	$0.24 (0.05)^{***}$	$0.24 (0.05)^{**}$
Nr. \circlearrowleft incumbent cand. $(t-1)$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{**}$
Nr. Q cand. $(t-1)$	-0.02(0.04)	-0.01 (0.04)	-0.01 (0.04)
Nr. seats	$0.07 (0.03)^*$	0.05 (0.03)	0.03(0.03)
Total nr. candidates	$0.12 (0.01)^{***}$	$0.12 (0.02)^{***}$	$0.13 (0.02)^{**}$
Distance from nearest women's group	0.00(0.00)	$-0.08 (0.02)^{***}$	$-0.07 (0.02)^{**}$
Distance from women's group \times 1978		0.03(0.03)	0.04 (0.03)
Distance from women's group \times 1982		$0.06 (0.03)^*$	$0.06 (0.03)^*$
Distance from women's group \times 1986		$0.07 (0.02)^{**}$	$0.07 (0.03)^*$
Distance from women's group \times 1990		$0.08 (0.02)^{***}$	$0.06 (0.03)^*$
Distance from women's group \times 1994		$0.08 (0.02)^{***}$	$0.06 (0.02)^*$
Distance from women's group \times 1998		$0.09 (0.02)^{***}$	$0.07 (0.02)^{**}$
Distance from women's group \times 2002		$0.09 (0.02)^{***}$	$0.07 (0.02)^{**}$
Distance from women's group \times 2006		$0.09 (0.02)^{***}$	$0.07 (0.02)^{**}$
Distance from women's group \times 2010		$0.08 (0.02)^{***}$	$0.06 (0.02)^*$
Spatial lag \times 1978			-4.02(2.71)
Spatial lag \times 1982			-4.89(2.65)
Spatial lag \times 1986			$-5.38 (2.61)^*$
Spatial lag \times 1990			$-6.07 (2.60)^*$
Spatial lag \times 1994			$-6.23 (2.61)^*$
Spatial lag \times 1998			$-6.32 (2.59)^*$
Spatial lag \times 2002			$-6.43 (2.60)^*$
Spatial lag \times 2006			$-6.19 (2.60)^*$
Spatial lag \times 2010			$-6.52 (2.61)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20
Deviance	868.00	836.02	813.76
Num. obs.	1531	1531	1531

Table SI8: Replication of Table SI4 with the distance from the nearest women's group as an additional explanatory variable (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

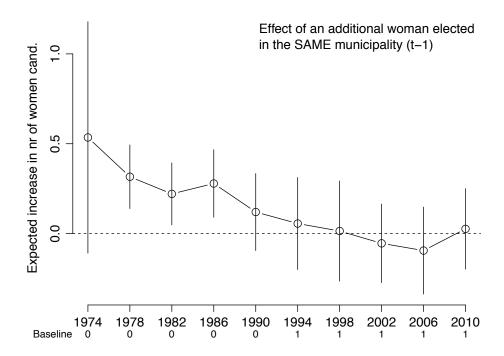


Figure SI5: Effect of an additional woman elected in the same municipality on the number of women candidates. The baseline is the year-specific modal (most frequent) value. The lines denote 95% confidence intervals. The figure is based on Model 3 in Table 1.

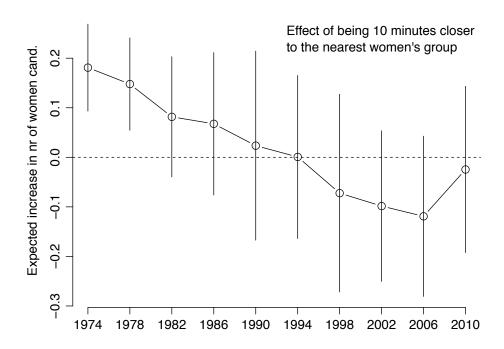


Figure SI6: Effect of being ten minutes closer to the next women's group on the number of female candidates. The lines denote 95% confidence intervals. Figure based on the second model in Table SI8.

SI5 Interview excerpts

Interview #1: "At the women's associations they were looking for candidates, who were interested and could do it, and who did it. They started doing some propaganda, which was good. After me came a woman through the women's association. Today it's different, but at the time that's how it was. Because these women were just housewives, then."

Interview #2: "A group of women contacted me after a women's meeting; they really wanted to find a woman for the next election. I thought it over and saw myself as a pioneer, because then maybe also the women who supported me would dare to do it themselves. Because my first question was: 'Why don't you do it yourself?' Because I was not yet active in politics. They simply didn't dare to do it, and I did. [Do you think that your example inspired other women in the region?] Yes, already during my second term in office there were many. We soon founded a group of women politicians in our district. It was very good: we worked together nicely; we compared and learned from one another regardless of political party. [Q: Did you try to find a woman to replace you when you quit?] I didn't have to take care of that. It happened spontaneously. There was a competent woman interested in finance, and she stayed for three terms or more. The dam had already broken; afterwards that was taken for granted.

Interview #3: "[Q: Were you influenced by Zurich?] Yes, in Zurich they did it [elected women] an election before. I mean, we simply saw that [women] were making progress and then we also had the feeling that that would be the trend, but no direct influence. The women's association once invited Ursula Koch to give a talk, before I was in the municipal executive, and we were really interested in that. [Q: Could you motivate another woman to replace you when you quit?] No, by then society had already changed. I didn't need to do much convincing. Funny enough, after me came again two women, one from my own party—my successor, we had to motivate her a little bit—but basically it happened spontaneously. I would say the community would have been embarrassed not to have a woman to replace me. With me they had a good experience. At the last two elections, I received the most votes. At the beginning it was obviously still tight, because many thought I understood nothing of the job."

Interview #4: "[Q: Why were there at first so few women candidates?] On the one hand women have less confidence, because one has to become a public figure and they have the feeling that they can't do it. In this respect I think that also at the national level there was a push with Lilian Uchtenhagen and Christiane Brunner [who controversially failed to be elected in the national executive], who showed that it's simply no longer possible that women are held back."

- Interview #5: "In 1986 there was an election in Berg am Irchel with a woman running against a man in the second round. I was elected here in _____. This was used by the supporters of the woman, they wrote in their pamphlet that it's now time to elect a woman, because in _____ they also have elected one. And then they told me that it had an impact, that I had already been elected. Yes, maybe they thought, if they have a woman, then we also need one. [Q: in the 1990s were elected increasingly more women.] Yes and I'd like to say, in _____ women are no longer an issue, quite the contrary. I feel that at that time many women were afraid to take up such an office. Maybe because there were only men or because they were afraid of the campaign, because they knew it could get difficult."
- Interview #6: "I noticed that in such a small district as ours, a political office makes you well know even without wanting it. This photo is in the newspaper and everybody sees it. I thought, in six months, people in the district will have forgotten it, but that was not the case. This face stuck with the people. Especially women remembered my face."
- Interview #7: "[Do you think you were a role model for other women?] Yes, certainly. It opened doors.

 Today we have two women in the executive. It's certainly easier, once a woman has already done it.

 [Did women use to be more hesitant?] Yes, I think so. Many women told me they would have never dared it."
- Interview #8: "[Q: Do you think that your election had an impact elsewhere in the region?] I think in general women thought: it has been shown that women can do something in politics."
- Interview #9: "The first time [I ran for office] I already did pretty well, also because many women wanted a woman to be elected. The second time, then, it worked. This is a reason why there are not more women in politics. If they're not elected the first time, they get scared, don't run a second time, and withdraw. But it strengthened me. Then with two other women, we founded the Women's Forum ______. Then we asked all communities in the district to join. It was an attempt to mobilize women across communities. [Q: Do you think you were an example for other women?] Yes, I think so. They thought, 'If this one can, then I also can'."
- Interview #10: "Women often said that they had nothing to do with politics. First of all, one must change their mind. But this persuasion work is not done by men. So I had to tell the other women that everything you do is actually political. Women would be in the school office. I came always with the argument that the school office is actually the same as real, hard politics. It is concrete politics. Everything you touch is politics and so you should say something and do something if something bothers you. And so I could convince other women."

Interview #11: "I was often invited by interested women candidates who wanted to to know what it means to become a politician. Or I was invited by parties or by the women's organizations, which were organizing seminars for women candidates. They wanted to know, from someone who had the experience, how bad it actually is, or is it motivating, or are we women doomed? I always tried—and I was not the only one—to hearten young, lively, happy women. I don't think that many women were elected because of me, but my being a role model for them, that was done certainly also by many other women. That was simply necessary at the time. [Q: Did the women's association play an important role in mentoring women?] Yes, I think the women's association office played an important role at the time, also because it was targeted specifically at bourgeois women. Leftist women had, I think, more self-confidence in this respect. Not every woman was lucky enough to have enough self-confidence to run for office, or to be supported by their family. Women needed a network; the men already had it. I mean that directly and personally, not institutionally."

SI6 Robustness tests

- Alternative specifications for the models in Table 1:
 - No control for the number of incumbent female candidates (Table SI9).
 - Alternative operationalizations of the connectivity matrix (W): inverse of travel time by car between all pairs of municipalities (Table SI10); inverse of travel time by car between all pairs of municipalities, combined with the absolute difference of population (Table SI11).
 - Unit fixed effects (Table SI12).
 - Parties: percent of votes in national elections (Table SI13)
 - Additional control variable: municipal parliament (no = 0, yes = 1) (Table SI14)
 - Percent of women candidates as the dependent variable (Table SI15).
 - Various control variables measured as factors (Table SI16).
 - No control variables except dummies (Table SI17).
 - Poisson models with robust standard errors (Table SI18).
 - Negative binomial models with classical standard errors (Table SI19).
 - Negative binomial models with robust standard errors (Table SI20).
- Alternative specifications for the models in Table SI4:
 - Alternative operationalization of the connectivity matrix (W) (inverse of travel time by car between all pairs of municipalities) (Table SI21)
 - Without control variables (Table SI22).
 - Poisson estimates with standard errors adjusted for clustering on municipalities (Table SI23).
 - Negative binomial estimates (Table SI24).
 - Negative binomial estimates with standard errors adjusted for clustering on municipalities (Table SI25).
- Alternative specifications for the models in Table SI7:
 - Alternative operationalization of the connectivity matrix (W) (inverse of travel time by car between all pairs of municipalities) (Table SI26).

 Alternative operationalizations of the dependent variable (votes received by the best woman divided by the votes received by the worst elected candidate; average votes received by women divided by the average votes received by men) (Table SI27).

		DV: Nr. femal	e candidates	
(Intercept)	$-2.45 (0.82)^{**}$	$-3.35 (0.85)^{***}$	$-2.48 (0.83)^{**}$	$-3.33(0.86)^{***}$
Spatial lag	$0.04\ (0.10)$	8.72 (2.44)***	0.07(0.10)	$9.09(2.53)^{***}$
Nr. Q elected $(t-1)$	$0.20 (0.06)^{***}$	$0.22 (0.06)^{***}$	$1.11(0.39)^{**}$	$1.11(0.39)^{**}$
Nr. σ incumbent cand. $(t-1)$	$-0.11(0.02)^{***}$	$-0.11 (0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$
Nr. Q cand. $(t-1)$	-0.01(0.04)	0.00(0.04)	0.00(0.04)	0.00(0.04)
Nr. seats	$0.07(0.03)^*$	0.04(0.03)	0.04(0.03)	0.02(0.03)
Total nr. candidates	0.11 (0.01)***	$0.12 (0.02)^{***}$	$0.12 (0.02)^{***}$	$0.13 (0.02)^{***}$
Spatial lag \times 1978	,	$-5.84(2.52)^*$,	$-6.84(2.64)^{**}$
Spatial lag \times 1982		$-7.24(2.47)^{**}$		$-7.96(2.59)^{**}$
Spatial lag \times 1986		$-7.88(2.45)^{**}$		$-8.61(2.55)^{***}$
Spatial lag \times 1990		$-8.51(2.44)^{***}$		$-8.90(2.54)^{***}$
Spatial lag \times 1994		$-8.57(2.43)^{***}$		$-8.88(2.53)^{***}$
Spatial lag \times 1998		$-8.76(2.43)^{***}$		$-9.07(2.53)^{***}$
Spatial lag \times 2002		$-8.88(2.43)^{***}$		$-9.18(2.53)^{***}$
Spatial lag \times 2006		$-8.86(2.44)^{***}$		$-9.10(2.53)^{***}$
Spatial lag \times 2010		$-8.79(2.44)^{***}$		$-9.12(2.54)^{***}$
Nr. Q elected $(t-1) \times 1978$, ,	-0.11(0.42)	-0.27(0.43)
Nr. Q elected $(t-1) \times 1982$			-0.47(0.43)	-0.61(0.44)
Nr. Q elected $(t-1) \times 1986$			-0.50(0.41)	-0.55(0.42)
Nr. Q elected $(t-1) \times 1990$			$-0.86 (0.40)^*$	$-0.86 (0.40)^*$
Nr. Q elected $(t-1) \times 1994$			$-0.93 (0.40)^*$	$-0.93 (0.40)^*$
Nr. Q elected $(t-1) \times 1998$			$-0.97 (0.40)^*$	$-0.94 (0.40)^*$
Nr. Q elected $(t-1) \times 2002$			$-1.00 (0.40)^*$	$-0.96 (0.40)^*$
Nr. Q elected $(t-1) \times 2006$			$-1.03 (0.40)^{**}$	$-1.01 (0.40)^*$
Nr. Q elected $(t-1) \times 2010$			$-0.98 (0.40)^*$	$-0.96 (0.40)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
Deviance	897.40	854.77	852.93	828.01
Num. obs.	1531	1531	1531	1531

Table SI9: Replication of Table 1, without controlling for the number of incumbent female candidates. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	, abeli	DV: Nr. femal		, dealed
(Intercept)	$-2.58 (0.82)^{**}$	$-4.33 (0.95)^{***}$	$-2.57 (0.83)^{**}$	$-4.54 (0.98)^{***}$
Spatial lag	0.20(0.36)	39.28 (10.92)***	0.28 (0.36)	$44.84 (11.70)^{***}$
Nr. Q elected $(t-1)$	0.06 (0.06)	0.07(0.06)	$0.95 (0.39)^*$	$1.19 (0.41)^{**}$
Nr. Q incumbent cand. $(t-1)$	0.24 (0.04)***	$0.24 (0.04)^{***}$	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$
Nr. \circlearrowleft incumbent cand. $(t-1)$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{***}$
Nr. Q cand. $(t-1)$	-0.02(0.04)	-0.02(0.04)	-0.01(0.04)	-0.01(0.04)
Nr. seats	$0.07 (0.03)^*$	0.04(0.03)	0.04(0.03)	0.02(0.03)
Total Nr. candidates	$0.12(0.01)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$
Spatial lag \times 1978	, ,	$-27.64 (11.26)^*$, ,	$-34.20(12.10)^{**}$
Spatial lag \times 1982		$-34.66 (11.03)^{**}$		$-41.42 (11.83)^{***}$
Spatial lag \times 1986		$-36.16 (10.96)^{***}$		$-42.81 (11.75)^{***}$
Spatial lag \times 1990		$-38.29 (10.93)^{***}$		$-43.95 (11.71)^{***}$
Spatial lag \times 1994		$-38.88 (10.92)^{***}$		$-44.27 (11.70)^{***}$
Spatial lag \times 1998		$-39.35 (10.92)^{***}$		$-44.74 (11.70)^{***}$
Spatial lag \times 2002		$-39.95(10.92)^{***}$		$-45.21(11.70)^{***}$
Spatial lag \times 2006		$-39.68 (10.93)^{***}$		$-44.80 (11.70)^{***}$
Spatial lag \times 2010		$-39.52 (10.93)^{***}$		$-44.99 (11.71)^{***}$
Nr. Q elected $(t-1) \times 1978$, ,	-0.15(0.42)	-0.51(0.44)
Nr. \dot{Q} elected $(t-1) \times 1982$			-0.44(0.43)	-0.80(0.45)
Nr. \bigcirc elected $(t-1) \times 1986$			-0.49(0.41)	-0.79(0.43)
Nr. \bigcirc elected $(t-1) \times 1990$			$-0.81 (0.40)^*$	$-1.06(0.42)^*$
Nr. $\stackrel{\cdot}{Q}$ elected $(t-1)\times 1994$			$-0.91(0.40)^*$	$-1.15 (0.41)^{**}$
Nr. Q elected $(t-1) \times 1998$			$-0.94(0.40)^*$	$-1.15 (0.41)^{**}$
Nr. \mathcal{Q} elected $(t-1) \times 2002$			$-0.99(0.40)^*$	$-1.19(0.41)^{**}$
Nr. $\stackrel{\tau}{Q}$ elected $(t-1)\times 2006$			$-1.02 (0.40)^{**}$	$-1.25 (0.41)^{**}$
Nr. $\stackrel{\cdot}{Q}$ elected $(t-1)\times 2010$			$-0.93(0.40)^*$	$-1.15 (0.41)^{**}$
Connectivity matrix	All others	All others	All others	All others
Unit fixed effects	No	No	No	No
Deviance	868.40	824.49	826.26	795.29
Num. obs.	1531	1531	1531	1531
$***_n < 0.001 **_n < 0.01 *_n < 0.01$				

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table SI10: Replication of Table 1, with an alternative specification of the connectivity matrix (W) (travel time by car between all pairs of municipalities). (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

Spatial lag -0.07 Nr. \cite{Q} elected $(t-1)$ 0.06 Nr. \cite{Q} incumbent cand. $(t-1)$ 0.23 Nr. \cite{Q} incumbent cand. $(t-1)$ -0.11	$ \begin{array}{cccc} (0.06) & 0.07 \text{ (0} \\ (0.04)^{***} & 0.23 \text{ (0} \\ (0.02)^{***} & -0.11 \text{ (0} \\ (0.04) & -0.02 \text{ (0} \\ (0.03)^{*} & 0.06 \text{ (0} \end{array} $	$\begin{array}{cccc} 1.31)^{***} & -0.02 & 0.10 \\ 0.06) & 0.91 & (0.40 \\ 0.05)^{***} & 0.23 & (0.05 \\ 0.02)^{***} & -0.11 & (0.02 \\ 0.04) & -0.01 & (0.04 \\ \end{array}$	7.32 (1.33)*** 0)* 1.15 (0.40)** 5)*** 0.23 (0.05)*** 2)*** -0.11 (0.02)***
Spatial lag -0.07 Nr. \cite{Q} elected $(t-1)$ 0.06 Nr. \cite{Q} incumbent cand. $(t-1)$ 0.23 Nr. \cite{Q} incumbent cand. $(t-1)$ -0.11	$ \begin{array}{cccc} (0.10) & 6.70 \text{ (1)} \\ (0.06) & 0.07 \text{ (0)} \\ (0.04)^{***} & 0.23 \text{ (0)} \\ (0.02)^{***} & -0.11 \text{ (0)} \\ (0.04) & -0.02 \text{ (0)} \\ (0.03)^{*} & 0.06 \text{ (0)} \end{array} $	$\begin{array}{cccc} 1.31)^{***} & -0.02 & (0.10 \\ 0.06) & 0.91 & (0.40 \\ 0.05)^{***} & 0.23 & (0.05 \\ 0.02)^{***} & -0.11 & (0.02 \\ 0.04) & -0.01 & (0.04 \\ \end{array}$	7.32 (1.33)*** 0)* 1.15 (0.40)** 5)*** 0.23 (0.05)*** 2)*** -0.11 (0.02)***
Nr. Q incumbent cand. $(t-1)$ 0.23 Nr. O incumbent cand. $(t-1)$ -0.11	$ \begin{array}{cccc} (0.06) & 0.07 \text{ (0} \\ (0.04)^{***} & 0.23 \text{ (0} \\ (0.02)^{***} & -0.11 \text{ (0} \\ (0.04) & -0.02 \text{ (0} \\ (0.03)^{*} & 0.06 \text{ (0} \end{array} $	0.06) $0.91 (0.40)0.05)^{***} 0.23 (0.05)0.02)^{***} -0.11 (0.02)0.04)$ $-0.01 (0.04)$	$0)^*$ $1.15 (0.40)^{**}$ $0)^{***}$ $0.23 (0.05)^{***}$ $0)^{***}$ $-0.11 (0.02)^{***}$
Nr. \circlearrowleft incumbent cand. $(t-1)$ -0.11	$(0.02)^{***}$ -0.11 (0.04) -0.02 (0.03)* 0.06 (0.06)	0.05)*** $0.23 (0.05)$ 0.02)*** $0.01 (0.02)$ 0.04) $0.01 (0.04)$	$0.23 (0.05)^{***}$ $0.11 (0.02)^{***}$
Nr. \circlearrowleft incumbent cand. $(t-1)$ -0.11	$(0.02)^{***}$ -0.11 (0.04) -0.02 (0.03)* 0.06 (0.06)	$(0.02)^{***} -0.11 (0.02) \\ (0.04) -0.01 (0.04)$	$(0.02)^{***} -0.11 (0.02)^{***}$
	(0.04) -0.02 (0 $(0.03)^*$ 0.06 (0	-0.01 (0.04)	
Nr. Q cand. $(t-1)$ -0.02	$(0.03)^*$ 0.06 (0		,
Nr. seats 0.08		0.03) 0.05 (0.03)	0.04 (0.03)
Total nr. candidates 0.12	$(0.01)^{***}$ 0.12 (0	$0.02)^{***}$ $0.13 (0.02)$	$(0.02)^{***}$ 0.13 $(0.02)^{***}$
Spatial lag \times 1978	-4.59(1	1.41)**	$-5.52 (1.47)^{***}$
Spatial lag \times 1982	-5.98(1	1.38)***	$-6.93(1.43)^{***}$
Spatial lag \times 1986	-6.57(1	1.35)***	$-7.32(1.38)^{***}$
Spatial lag \times 1990	-6.62(1	1.32)***	$-7.21 (1.35)^{***}$
Spatial lag \times 1994	-6.73(1	1.32)***	$-7.30 (1.34)^{***}$
Spatial lag \times 1998	-6.78(1	1.31)***	$-7.33(1.34)^{***}$
Spatial lag \times 2002	-6.86 (1)	1.32)***	$-7.38(1.34)^{***}$
Spatial lag \times 2006	-6.86 (1)	1.32)***	$-7.36(1.34)^{***}$
Spatial lag \times 2010	-6.88 (1	1.32)***	$-7.48(1.34)^{***}$
Nr. Q elected $(t-1) \times 1978$		-0.10 (0.42)	
Nr. Q elected $(t-1) \times 1982$		-0.39(0.43)	-0.67(0.44)
Nr. Q elected $(t-1) \times 1986$		-0.44(0.41)	-0.67(0.42)
Nr. Q elected $(t-1) \times 1990$		-0.76(0.40)	$-0.99(0.41)^*$
Nr. Q elected $(t-1) \times 1994$		-0.86(0.40)	$(0.41)^*$ $-1.10(0.41)^{**}$
Nr. Q elected $(t-1) \times 1998$		-0.89(0.40)	
Nr. Q elected $(t-1) \times 2002$		-0.95(0.40)	$-1.18(0.41)^{**}$
Nr. Q elected $(t-1) \times 2006$		-0.98(0.40)	$-1.22(0.41)^{**}$
Nr. Q elected $(t-1) \times 2010$		-0.90(0.40)	$(0.41)^*$ $-1.13(0.41)^{**}$
Connectivity matrix Com	bined Combi		l Combined
Unit fixed effects	No	No No	
		1.44 813.93	
Num. obs.	1513 1	513 1513	3 1513

Table SI11: Replication of Table 1, with an alternative specification of the connectivity matrix (W) (travel time by car between all pairs of municipalities and absolute difference of population). (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

		DV: Nr. fema	la sandidatas	
/T	0.74 (5.70)			1 15 (5 05)
(Intercept)	-2.74(5.78)	-0.06 (5.82)	-0.24 (5.82)	1.15 (5.85)
Spatial lag	-0.05 (0.15)	7.42 (2.55)**	0.01 (0.16)	$8.34 (2.65)^{**}$
Nr. Q elected $(t-1)$	-0.01(0.07)	0.01 (0.07)	$0.85 (0.41)^*$	$0.96 (0.41)^*$
Nr. Q incumbent cand. $(t-1)$	$0.24 (0.05)^{***}$	$0.24 (0.05)^{***}$	$0.22 (0.05)^{***}$	$0.23 (0.05)^{***}$
Nr. \circlearrowleft incumbent cand. $(t-1)$	$-0.10(0.02)^{***}$	$-0.10 (0.02)^{***}$	$-0.10 (0.02)^{***}$	$-0.10 (0.02)^{***}$
Nr. Q cand. $(t-1)$	-0.05 (0.04)	-0.06 (0.04)	-0.05 (0.04)	-0.05 (0.04)
Nr. seats	0.03 (0.05)	0.00(0.05)	$0.01\ (0.05)$	-0.01 (0.05)
Total nr. candidates	$0.14 (0.02)^{***}$	$0.15 (0.02)^{***}$	$0.15(0.02)^{***}$	$0.15 (0.02)^{***}$
Spatial lag \times 1978		-4.86(2.59)		$-6.13 (2.70)^*$
Spatial lag \times 1982		$-6.21 (2.55)^*$		$-7.40(2.67)^{**}$
Spatial lag \times 1986		$-6.71(2.54)^{**}$		$-7.93(2.64)^{**}$
Spatial lag \times 1990		$-7.18(2.53)^{**}$		$-8.12 (2.63)^{**}$
Spatial lag \times 1994		$-7.30(2.52)^{**}$		$-8.15(2.62)^{**}$
Spatial lag \times 1998		$-7.43(2.54)^{**}$		$-8.25(2.64)^{**}$
Spatial lag \times 2002		$-7.63(2.53)^{**}$		$-8.43(2.63)^{**}$
Spatial lag \times 2006		$-7.61(2.53)^{**}$		$-8.37(2.63)^{**}$
Spatial lag \times 2010		$-7.55(2.53)^{**}$		$-8.43(2.63)^{**}$
Nr. Q elected $(t-1) \times 1978$			-0.17(0.44)	-0.37(0.44)
Nr. Q elected $(t-1) \times 1982$			-0.44(0.44)	-0.63(0.46)
Nr. Q elected $(t-1) \times 1986$			-0.46(0.43)	-0.59(0.44)
Nr. Q elected $(t-1) \times 1990$			-0.75(0.42)	$-0.86(0.42)^*$
Nr. Q elected $(t-1) \times 1994$			$-0.87(0.42)^*$	$-0.97(0.42)^*$
Nr. \bigcirc elected $(t-1) \times 1998$			$-0.92(0.42)^*$	$-1.02(0.42)^*$
Nr. $\dot{\varphi}$ elected $(t-1) \times 2002$			$-0.97(0.41)^*$	$-1.03 (0.42)^*$
Nr. \bigcirc elected $(t-1) \times 2006$			$-1.01 (0.41)^*$	$-1.09 (0.42)^{**}$
Nr. φ elected $(t-1) \times 2010$			$-0.92(0.41)^*$	$-1.00(0.42)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	Yes	Yes	Yes	Yes
Deviance	741.18	713.16	708.54	689.15
Num. obs.	1531	1531	1531	1531
**** < 0.001 *** < 0.01 ** < 0.01	05			

Table SI12: Replication of Table 1, with unit fixed effects. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

		DV: Nr. femal	e candidates	
(Intercept)	$-3.52(0.74)^{***}$	$-4.41 (0.70)^{***}$	$-4.67(0.71)^{***}$	$-4.07(0.63)^{***}$
Spatial lag	8.79 (2.54)***	$9.09 (2.54)^{***}$	$8.82 (2.54)^{***}$	$9.00(2.55)^{***}$
Nr. Q elected $(t-1)$	$0.92 (0.40)^*$	$0.97 (0.40)^*$	$0.93 (0.40)^*$	$0.95 (0.39)^*$
Nr. Q incumbent cand. $(t-1)$	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$
Nr. σ incumbent cand. $(t-1)$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$
Nr. \bigcirc cand. $(t-1)$	-0.01(0.04)	-0.01(0.04)	-0.01(0.04)	-0.01(0.04)
Nr. seats	0.02(0.03)	0.02(0.03)	0.02(0.03)	0.02(0.03)
Total nr. candidates	0.13 (0.02)***	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$
Spatial lag \times 1978	-0.30(0.43)	-0.33(0.43)	-0.32(0.43)	-0.32(0.43)
Spatial lag \times 1982	-0.56(0.44)	-0.59(0.44)	-0.56(0.44)	-0.59(0.44)
Spatial lag \times 1986	-0.52(0.42)	-0.56(0.42)	-0.53(0.42)	-0.55(0.42)
Spatial lag \times 1990	-0.79(0.40)	$-0.83 (0.40)^*$	$-0.80 (0.40)^*$	$-0.82 (0.40)^*$
Spatial lag \times 1994	$-0.88 (0.40)^*$	$-0.93 (0.40)^*$	$-0.90 (0.40)^*$	$-0.92 (0.40)^*$
Spatial lag \times 1998	$-0.87 (0.40)^*$	$-0.92 (0.40)^*$	$-0.89 (0.40)^*$	$-0.91 (0.40)^*$
Spatial lag \times 2002	$-0.92 (0.40)^*$	$-0.96 (0.40)^*$	$-0.93 (0.40)^*$	$-0.95 (0.40)^*$
Spatial lag \times 2006	$-0.97 (0.40)^*$	$-1.02 (0.40)^*$	$-0.99 (0.40)^*$	$-1.01 (0.40)^*$
Spatial lag \times 2010	$-0.87 (0.40)^*$	$-0.92 (0.40)^*$	$-0.89 (0.40)^*$	$-0.91 (0.40)^*$
Nr. Q elected $(t-1) \times 1978$	$-6.55 (2.64)^*$	$-6.79 (2.64)^*$	$-6.59 (2.65)^*$	$-6.70 (2.65)^*$
Nr. Q elected $(t-1) \times 1982$	$-7.73(2.59)^{**}$	$-8.05 (2.59)^{**}$	$-7.82(2.59)^{**}$	$-7.93(2.59)^{**}$
Nr. Q elected $(t-1) \times 1986$	$-8.27 (2.55)^{**}$	$-8.59 (2.55)^{***}$	$-8.35 (2.56)^{**}$	$-8.48 (2.56)^{***}$
Nr. Q elected $(t-1) \times 1990$	$-8.53(2.54)^{***}$	$-8.85(2.54)^{***}$	$-8.61(2.54)^{***}$	$-8.75 (2.55)^{***}$
Nr. Q elected $(t-1) \times 1994$	$-8.57(2.54)^{***}$	$-8.86(2.54)^{***}$	$-8.64(2.54)^{***}$	$-8.76 (2.54)^{***}$
Nr. Q elected $(t-1) \times 1998$	$-8.75(2.54)^{***}$	$-9.06(2.54)^{***}$	$-8.81 (2.54)^{***}$	$-8.95 (2.55)^{***}$
Nr. Q elected $(t-1) \times 2002$	$-8.82(2.54)^{***}$	$-9.14(2.54)^{***}$	$-8.89(2.54)^{***}$	$-9.03 (2.55)^{***}$
Nr. Q elected $(t-1) \times 2006$	$-8.68 (2.54)^{***}$	$-9.03(2.54)^{***}$	$-8.76 (2.54)^{***}$	$-8.90(2.55)^{***}$
Nr. Q elected $(t-1) \times 2010$	$-8.77(2.55)^{***}$	$-9.11 (2.54)^{***}$	$-8.83 (2.55)^{***}$	$-9.00(2.55)^{***}$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
Deviance	800.05	801.63	799.67	801.71
Num. obs.	1531	1531	1531	1531
***p < 0.001, **p < 0.01, *p < 0.01	05			

Table SI13: Replication of Table 1, with additional control variables (percent of votes received by the four major parties in national elections). (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

DV: Nr. female candidates					
(Intercept)	$-2.64 (0.85)^{**}$	$-3.48 (0.88)^{***}$	$-2.71 (0.86)^{**}$	$-3.50 (0.88)^{***}$	
Spatial lag	0.07(0.10)	8.77 (2.44)***	0.09(0.11)	$9.08 (2.53)^{***}$	
Nr. Q elected $(t-1)$	0.05(0.06)	0.07(0.06)	$0.94 (0.40)^*$	$0.94 (0.40)^*$	
Nr. Q incumbent cand. $(t-1)$	0.24 (0.04)***	0.24 (0.04)***	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$	
Nr. σ incumbent cand. $(t-1)$	$-0.11 (0.02)^{***}$	$-0.11 (0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$	
Nr. Q cand. $(t-1)$	-0.02(0.04)	-0.02(0.04)	-0.01(0.04)	-0.01(0.04)	
Nr. seats	$0.07 (0.03)^*$	0.03(0.03)	0.04(0.03)	0.02(0.03)	
Total nr. candidates	$0.12(0.01)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$	
Spatial lag \times 1978	, ,	$-5.88(2.52)^*$, ,	$-6.79(2.64)^*$	
Spatial lag \times 1982		$-7.32(2.48)^{**}$		$-8.03(2.59)^{**}$	
Spatial lag \times 1986		$-7.90(2.45)^{**}$		$-8.56 (2.55)^{***}$	
Spatial lag \times 1990		$-8.48(2.44)^{***}$		$-8.85(2.54)^{***}$	
Spatial lag \times 1994		$-8.60(2.44)^{***}$		$-8.87(2.53)^{***}$	
Spatial lag \times 1998		$-8.77(2.44)^{***}$		$-9.05(2.53)^{***}$	
Spatial lag \times 2002		$-8.91(2.44)^{***}$		$-9.14(2.53)^{***}$	
Spatial lag \times 2006		$-8.84(2.44)^{***}$		$-9.02(2.53)^{***}$	
Spatial lag \times 2010		$-8.81(2.44)^{***}$		$-9.11(2.54)^{***}$	
Nr. Q elected $(t-1) \times 1978$, ,	-0.14(0.42)	-0.30(0.43)	
Nr. Q elected $(t-1) \times 1982$			-0.43(0.43)	-0.56(0.44)	
Nr. Q elected $(t-1) \times 1986$			-0.49(0.41)	-0.53(0.42)	
Nr. Q elected $(t-1) \times 1990$			$-0.81 (0.40)^*$	$-0.81 (0.40)^*$	
Nr. Q elected $(t-1) \times 1994$			$-0.91(0.40)^*$	$-0.90(0.40)^*$	
Nr. $\dot{\varphi}$ elected $(t-1) \times 1998$			$-0.94 (0.40)^*$	$-0.90 (0.40)^*$	
Nr. Q elected $(t-1) \times 2002$			$-0.99(0.40)^*$	$-0.94 (0.40)^*$	
Nr. \circ elected $(t-1) \times 2006$			$-1.02(0.40)^*$	$-1.00(0.40)^*$	
Nr. \bigcirc elected $(t-1) \times 2010$			$-0.93(0.40)^*$	$-0.90(0.40)^*$	
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20	
Unit fixed effects	No	No	No	No	
Deviance	868.14	826.22	825.69	801.16	
Num. obs.	1531	1531	1531	1531	
$\frac{1}{1} ***n < 0.001 **n < 0.01 *n < 0.001$)5				

Table SI14: Replication of Table 1, with an additional control variable (municipal parliament). (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

		DV: % female	e candidates	
(Intercept)	0.02 (0.07)	-0.01(0.07)	0.02 (0.07)	-0.01(0.07)
Spatial lag	0.11(0.08)	$2.31(0.99)^*$	0.10(0.08)	$2.32 (0.99)^*$
$\% \ Q \ \text{elected} \ (t-1)$	$0.10 (0.04)^*$	$0.10 (0.04)^*$	0.19(0.26)	0.20(0.26)
% Q incumbent cand. $(t-1)$	$0.42 (0.04)^{***}$	$0.42 (0.04)^{***}$	$0.41 (0.04)^{***}$	$0.42 (0.04)^{***}$
% or incumbent cand. $(t-1)$	$-0.11(0.01)^{***}$	$-0.11(0.01)^{***}$	$-0.11(0.01)^{***}$	$-0.10(0.01)^{***}$
$\%$ \bigcirc cand. $(t-1)$	$0.08 (0.04)^*$	$0.08 (0.04)^*$	$0.08 (0.04)^*$	$0.08 (0.04)^*$
Nr. seats	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
Total nr. candidates	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
Spatial lag \times 1978	, ,	-1.73(1.02)	` ,	-1.84(1.03)
Spatial lag \times 1982		$-2.04(1.01)^*$		$-2.01(1.01)^*$
Spatial lag \times 1986		-1.70(1.00)		-1.80(1.00)
Spatial lag \times 1990		$-2.19(0.99)^*$		$-2.17(1.00)^*$
Spatial lag \times 1994		$-2.15(1.00)^*$		$-2.19(1.00)^*$
Spatial lag \times 1998		$-2.28(1.00)^*$		$-2.27(1.00)^*$
Spatial lag \times 2002		$-2.61(1.00)^{**}$		$-2.65(1.01)^{**}$
Spatial lag \times 2006		$-2.12(1.02)^*$		$-2.15 (1.02)^*$
Spatial lag \times 2010		$-2.48(1.02)^*$		$-2.51 (1.02)^*$
$\%$ \bigcirc elected $(t-1) \times 1978$			0.06(0.29)	0.02(0.29)
$\%$ \bigcirc elected $(t-1) \times 1982$			-0.11(0.28)	-0.14(0.28)
$\%$ \bigcirc elected $(t-1) \times 1986$			0.07(0.27)	0.01(0.28)
$\%$ \bigcirc elected $(t-1) \times 1990$			-0.13(0.27)	-0.14(0.27)
$\%$ \bigcirc elected $(t-1) \times 1994$			-0.05(0.27)	-0.05(0.27)
$\%$ Q elected $(t-1) \times 1998$			-0.14(0.27)	-0.13(0.27)
$\%$ Q elected $(t-1) \times 2002$			-0.06(0.27)	-0.03(0.27)
$\%$ Q elected $(t-1) \times 2006$			-0.17(0.27)	-0.17(0.27)
$\%$ Q elected $(t-1) \times 2010$			-0.12(0.27)	-0.12(0.27)
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
$Adj. R^2$	0.58	0.58	0.58	0.58
Num. obs.	1531	1531	1531	1531
***p < 0.001, **p < 0.01, *p < 0.01	.05			

Table SI15: Replication of Table 1, with an alternative dependent variable (percent women candidates). (OLS regression coefficients and standard errors. "Spatial lag" refers the percent of women elected in other municipalities in the previous election.)

	DV: Nr. femal	e candidates
(Intercept)	$-3.14 (0.90)^{***}$	$-2.54 (0.88)^{**}$
Spatial lag	$9.16 (2.49)^{***}$	$8.71 (2.46)^{***}$
Nr. Q elected = 1 $(t-1)$	0.20 (0.13)	(2.20)
Nr. Q elected = 2 $(t-1)$	0.24 (0.16)	
Nr. Q elected = 3 $(t-1)$	0.17 (0.21)	
Nr. Q elected $Q = Q \cdot (t - 1)$	-0.25 (0.47)	
Nr. Q elected $Q = Q(t-1)$	0.20 (0.41)	0.22(0.13)
Nr. Q incumbent cand. $Q = 1$	$0.22 (0.07)^{**}$	0.22 (0.13)
Nr. Q incumbent cand. Q	$0.52 (0.07)$ $0.52 (0.10)^{***}$	
Nr. Q incumbent cand. $= 2(t-1)$	$0.69 (0.20)^{***}$	
	0.09 (0.20)	
Nr. Q incumbent cand. = $4(t-1)$	0.74(0.71)	0.31 (0.06)***
Nr. Q incumbent cand. $> 0 (t-1)$	0.26 (0.22)	$0.31\ (0.00)$
Nr. σ' incumbent cand. = 1 $(t-1)$	-0.26 (0.22)	
Nr. σ incumbent cand. = 2 $(t-1)$	-0.19 (0.21)	
Nr. σ incumbent cand. = 3 $(t-1)$	-0.34 (0.21)	
Nr. O' incumbent cand. = 4 $(t-1)$	$-0.47 (0.21)^*$	
Nr. O' incumbent cand. = 5 $(t-1)$	$-0.59 (0.22)^{**}$	
Nr. σ incumbent cand. = 6 $(t-1)$	$-0.63 (0.24)^{**}$	
Nr. O' incumbent cand. = 7 $(t-1)$	$-0.79 (0.30)^{**}$	
Nr. σ incumbent cand. = 8 $(t-1)$	$-1.03 \ (0.55)$	
Nr. o' incumbent cand. = $10 (t-1)$	-1.11 (0.75)	
Nr. σ incumbent cand. $> 0 (t-1)$		-0.30 (0.20)
Nr. Q cand. Q Q Q Q Q Q	0.22(0.14)	
Nr. Q cand. $Q = 2(t-1)$	0.14(0.15)	
Nr. Q cand. $Q = 3(t-1)$	0.18(0.17)	
Nr. Q cand. $= 4 (t-1)$	0.14(0.21)	
Nr. Q cand. = 5 $(t-1)$	0.03(0.31)	
Nr. Q cand. = 6 $(t-1)$	-0.30(0.50)	
Nr. Q cand. $= 7(t-1)$	0.01(0.49)	
Nr. \bigcirc cand. $> 0 (t-1)$,	0.20(0.13)
Spatial lag \times 1978	$-6.53(2.57)^*$	$-6.14(2.55)^*$
Spatial lag \times 1982	$-8.04 (2.53)^{**}$	$-7.72(2.50)^{**}$
Spatial lag \times 1986	$-8.50(2.50)^{***}$	$-7.97(2.47)^{**}$
Spatial lag \times 1990	$-9.04(2.49)^{***}$	$-8.60(2.46)^{***}$
Spatial lag \times 1994	$-9.11 (2.48)^{***}$	$-8.71 (2.46)^{***}$
Spatial lag \times 1998	$-9.13 (2.48)^{***}$	$-8.62 (2.45)^{***}$
Spatial lag \times 2002	$-9.24 (2.48)^{***}$	$-8.78 (2.45)^{***}$
Spatial lag \times 2002 Spatial lag \times 2006	$-9.13 (2.48)^{***}$	$-8.79 (2.46)^{***}$
Spatial lag \times 2010	$-9.21 (2.49)^{***}$	$-8.77 (2.46)^{***}$
Connectivity matrix	Closest 20	Closest 20
Unit fixed effects	No	No
Deviance	791.36	847.37
Num. obs.	1531	1531
*** $p < 0.001, **p < 0.01, *p < 0.05$		

Table SI16: Replication of Model 2 in Table 1, with count explanatory variables measured as factors or dichotomously. Year dummies and full controls included but not shown to save space.

		DV: Nr. femal	le candidates	
(Intercept)	$-1.21 (0.14)^{***}$	$-1.85 (0.24)^{***}$	$-1.24 (0.16)^{***}$	$-1.91 (0.25)^{**}$
Spatial lag	$0.71 (0.07)^{***}$	$11.48 (2.35)^{***}$		$11.13 (2.47)^{**}$
Nr. Q elected $(t-1)$			$1.53 (0.39)^{***}$	$1.48 (0.39)^{**}$
1978	0.11(0.19)	0.08(0.34)	-0.17(0.23)	-0.02(0.37)
1982	0.34(0.18)	$0.60 (0.30)^*$	0.19(0.21)	0.57(0.32)
1986	$0.76 (0.17)^{***}$	$1.08 (0.29)^{***}$	0.65 (0.20)**	1.05 (0.30)**
1990	$0.86 (0.17)^{***}$	$1.51 (0.28)^{***}$	$1.03 (0.19)^{***}$	$1.51 (0.30)^{**}$
1994	$1.21 (0.16)^{***}$	$1.79 (0.29)^{***}$	$1.38 (0.19)^{***}$	1.79 (0.31)**
1998	$0.82 (0.18)^{***}$	$1.73 (0.31)^{***}$	$1.29 (0.20)^{***}$	$1.76 (0.33)^{**}$
2002	$0.67 (0.19)^{***}$	$1.69 (0.36)^{***}$	$1.06 (0.21)^{***}$	1.67 (0.37)**
2006	$0.83 (0.18)^{***}$	$1.62 (0.39)^{***}$	$1.25 (0.21)^{***}$	$1.59 (0.41)^{**}$
2010	$0.78 (0.18)^{***}$	$1.73 (0.41)^{***}$	$1.23 (0.21)^{***}$	$1.56 (0.43)^{**}$
Spatial lag \times 1978	, ,	$-7.96(2.46)^{**}$, ,	$-8.55(2.60)^{**}$
Spatial lag \times 1982		$-9.39(2.40)^{***}$		$-9.74(2.53)^{**}$
Spatial lag \times 1986		$-10.00(2.37)^{***}$		$-10.27(2.49)^{**}$
Spatial lag \times 1990		$-10.78(2.36)^{***}$		$-10.71(2.48)^{**}$
Spatial lag \times 1994		$-10.68 (2.36)^{***}$		$-10.69 (2.48)^{**}$
Spatial lag \times 1998		$-10.96 (2.36)^{***}$		$-10.92(2.47)^{**}$
Spatial lag $\times 2002$		$-11.02 (2.36)^{***}$		$-11.08(2.47)^{**}$
Spatial lag \times 2006		$-10.88 (2.36)^{***}$		$-10.85 (2.48)^{**}$
Spatial lag \times 2010		$-11.00(2.37)^{***}$		$-10.85 (2.48)^{**}$
Nr. Q elected $(t-1) \times 1978$			-0.32(0.42)	-0.51(0.43)
Nr. Q elected $(t-1) \times 1982$			-0.64(0.42)	-0.83(0.43)
Nr. Q elected $(t-1) \times 1986$			-0.74(0.40)	$-0.83(0.41)^*$
Nr. Q elected $(t-1) \times 1990$			$-1.12 (0.40)^{**}$	$-1.16 (0.40)^{**}$
Nr. Q elected $(t-1) \times 1994$			$-1.10 (0.40)^{**}$	$-1.12 (0.40)^{**}$
Nr. Q elected $(t-1) \times 1998$			$-1.18 (0.39)^{**}$	$-1.18 (0.40)^{**}$
Nr. Q elected $(t-1) \times 2002$			$-1.11 (0.39)^{**}$	$-1.07(0.40)^{**}$
Nr. Q elected $(t-1) \times 2006$			$-1.15 (0.39)^{**}$	$-1.13(0.40)^{**}$
Nr. Q elected $(t-1) \times 2010$			$-1.20 (0.39)^{**}$	$-1.16(0.39)^{**}$
AIC	3823.54	3785.29	3568.33	3534.66
BIC	3882.63	3892.72	3675.09	3694.81
Log Likelihood	-1900.77	-1872.65	-1764.16	-1737.33
Deviance	1239.86	1183.61	1041.63	987.97
Num. obs.	1590	1590	1538	1538

Table SI17: Replication of Table 1, without control variables except year dummies. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election.)

		DV: Nr. femal	la candidates	
(T1	0.61.(0.69)***			2 45 (0.62)***
(Intercept)	$-2.61 (0.63)^{***}$	$-3.49 (0.63)^{***}$	$-2.61 (0.63)^{***}$	$-3.45 (0.63)^{***}$
Spatial lag	0.08 (0.06)	8.77 (2.14)***	0.10 (0.06)	9.11 (2.25)***
Nr. Q elected $(t-1)$	0.05 (0.04)	0.07 (0.04)	$0.95 (0.31)^{**}$	0.94 (0.38)*
Nr. Q incumbent cand. $(t-1)$	$0.24 (0.03)^{***}$	$0.24 (0.03)^{***}$	$0.23 (0.03)^{***}$	0.23 (0.03)***
Nr. σ incumbent cand. $(t-1)$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$
Nr. Q cand. $(t-1)$	-0.02(0.03)	-0.02(0.03)	-0.01 (0.02)	-0.01 (0.02)
Nr. seats	$0.07 (0.03)^*$	0.03(0.03)	0.04(0.03)	0.02(0.03)
Total nr. candidates	$0.12 (0.02)^{***}$	$0.13 (0.01)^{***}$	$0.13 (0.01)^{***}$	$0.13 (0.01)^{***}$
Spatial lag \times 1978		$-5.88(2.14)^{**}$		$-6.81 (2.31)^{**}$
Spatial lag \times 1982		$-7.32(2.16)^{***}$		$-8.05(2.29)^{***}$
Spatial lag \times 1986		$-7.90(2.13)^{***}$		$-8.58 (2.24)^{***}$
Spatial lag \times 1990		$-8.48(2.14)^{***}$		$-8.87(2.24)^{***}$
Spatial lag \times 1994		$-8.59(2.16)^{***}$		$-8.89 (2.27)^{***}$
Spatial lag \times 1998		$-8.77(2.15)^{***}$		$-9.07(2.25)^{***}$
Spatial lag \times 2002		$-8.91(2.14)^{***}$		$-9.17(2.25)^{***}$
Spatial lag \times 2006		$-8.84(2.14)^{***}$		$-9.04(2.26)^{***}$
Spatial lag \times 2010		$-8.81(2.13)^{***}$		$-9.13(2.24)^{***}$
Nr. Q elected $(t-1) \times 1978$, ,	-0.15(0.30)	-0.30(0.38)
Nr. Q elected $(t-1) \times 1982$			-0.44(0.32)	-0.57(0.39)
Nr. \dot{Q} elected $(t-1) \times 1986$			-0.50(0.31)	-0.54(0.39)
Nr. \circ elected $(t-1) \times 1990$			$-0.82 (0.30)^{**}$	$-0.81 (0.38)^*$
Nr. φ elected $(t-1) \times 1994$			$-0.91 (0.30)^{**}$	$-0.91\ (0.37)^*$
Nr. \bigcirc elected $(t-1) \times 1998$			$-0.95(0.30)^{**}$	$-0.90\ (0.37)^*$
Nr. \bigcirc elected $(t-1) \times 2002$			$-1.00(0.31)^{**}$	$-0.94(0.38)^*$
Nr. \circ elected $(t-1) \times 2006$			$-1.03(0.31)^{**}$	$-1.00(0.39)^{**}$
Nr. \bigcirc elected $(t-1) \times 2010$			$-0.93 (0.30)^{**}$	$-0.90(0.37)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
Num. obs.	1531	1531	1531	1531
***n < 0.001, $**n < 0.01$, $*n < 0$.	05			

Table SI18: Replication of Table 1. (Poisson regression coefficients and standard errors adjusted for clustering on municipalities. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

		DV: Nr. femal	le candidates	
(Intercept)	$-2.61 (0.82)^{**}$	$-3.49 (0.85)^{***}$	$-2.61 (0.83)^{**}$	$-3.45 (0.86)^{***}$
Spatial lag	$0.08\ (0.10)$	8.77 (2.44)***	$0.10\ (0.10)$	$9.11(2.53)^{***}$
Nr. Q elected $(t-1)$	$0.05\ (0.06)$	0.07(0.06)	$0.95\ (0.39)^*$	$0.94 (0.40)^*$
Nr. Q incumbent cand. $(t-1)$	$0.24 (0.04)^{***}$	$0.24 (0.04)^{***}$	$0.23 (0.05)^{***}$	$0.23 (0.05)^{***}$
Nr. \vec{O} incumbent cand. $(t-1)$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$	$-0.11(0.02)^{***}$
Nr. \bigcirc cand. $(t-1)$	-0.02(0.04)	-0.02(0.04)	-0.01(0.04)	-0.01(0.04)
Nr. seats	$0.07 (0.03)^*$	0.03(0.03)	0.04(0.03)	0.02(0.03)
Total nr. candidates	$0.12 (0.01)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$	$0.13 (0.02)^{***}$
Spatial lag \times 1978		$-5.88(2.52)^*$		$-6.81 (2.64)^{**}$
Spatial lag \times 1982		$-7.32(2.47)^{**}$		$-8.05 (2.59)^{**}$
Spatial lag \times 1986		$-7.90(2.45)^{**}$		$-8.58 (2.55)^{***}$
Spatial lag \times 1990		$-8.48(2.44)^{***}$		$-8.87(2.53)^{***}$
Spatial lag \times 1994		$-8.59 (2.43)^{***}$		$-8.89 (2.53)^{***}$
Spatial lag \times 1998		$-8.77(2.44)^{***}$		$-9.07(2.53)^{***}$
Spatial lag \times 2002		$-8.91(2.44)^{***}$		$-9.17(2.53)^{***}$
Spatial lag \times 2006		$-8.84 (2.44)^{***}$		$-9.04(2.53)^{***}$
Spatial lag \times 2010		$-8.81 (2.44)^{***}$		$-9.13(2.53)^{***}$
Nr. Q elected $(t-1) \times 1978$			-0.15(0.42)	-0.30(0.43)
Nr. Q elected $(t-1) \times 1982$			-0.44(0.43)	-0.57(0.44)
Nr. Q elected $(t-1) \times 1986$			-0.50(0.41)	-0.54(0.42)
Nr. Q elected $(t-1) \times 1990$			$-0.82 (0.40)^*$	$-0.81 (0.40)^*$
Nr. Q elected $(t-1) \times 1994$			$-0.91 (0.40)^*$	$-0.91 (0.40)^*$
Nr. Q elected $(t-1) \times 1998$			$-0.95 (0.40)^*$	$-0.90 (0.40)^*$
Nr. Q elected $(t-1) \times 2002$			$-1.00 (0.40)^*$	$-0.94 (0.40)^*$
Nr. Q elected $(t-1) \times 2006$			$-1.03 (0.40)^{**}$	$-1.00 (0.40)^*$
Nr. Q elected $(t-1) \times 2010$			$-0.93 (0.40)^*$	$-0.90 (0.40)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
Num. obs.	1531	1531	1531	1531
-***p < 0.001, **p < 0.01, *p < 0.01)5			

Table SI19: Replication of Table 1. (Negative binomial regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

		DV: Nr. femal	la candidates	
(T1	0.61.(0.69)***			2 45 (0.62)***
(Intercept)	$-2.61 (0.63)^{***}$	$-3.49 (0.63)^{***}$	$-2.61 (0.63)^{***}$	$-3.45 (0.63)^{***}$
Spatial lag	0.08 (0.06)	8.77 (2.14)***	0.10 (0.06)	9.11 (2.25)***
Nr. Q elected $(t-1)$	0.05 (0.04)	0.07 (0.04)	$0.95 (0.31)^{**}$	0.94 (0.38)*
Nr. Q incumbent cand. $(t-1)$	$0.24 (0.03)^{***}$	$0.24 (0.03)^{***}$	$0.23 (0.03)^{***}$	0.23 (0.03)***
Nr. σ incumbent cand. $(t-1)$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$	$-0.11 (0.01)^{***}$
Nr. Q cand. $(t-1)$	-0.02(0.03)	-0.02(0.03)	-0.01 (0.02)	-0.01 (0.02)
Nr. seats	$0.07 (0.03)^*$	0.03(0.03)	0.04(0.03)	0.02(0.03)
Total nr. candidates	$0.12 (0.02)^{***}$	$0.13 (0.01)^{***}$	$0.13 (0.01)^{***}$	$0.13 (0.01)^{***}$
Spatial lag \times 1978		$-5.88(2.14)^{**}$		$-6.81 (2.31)^{**}$
Spatial lag \times 1982		$-7.32(2.16)^{***}$		$-8.05(2.29)^{***}$
Spatial lag \times 1986		$-7.90(2.13)^{***}$		$-8.58 (2.24)^{***}$
Spatial lag \times 1990		$-8.48(2.14)^{***}$		$-8.87(2.24)^{***}$
Spatial lag \times 1994		$-8.59(2.16)^{***}$		$-8.89 (2.27)^{***}$
Spatial lag \times 1998		$-8.77(2.15)^{***}$		$-9.07(2.25)^{***}$
Spatial lag \times 2002		$-8.91(2.14)^{***}$		$-9.17(2.25)^{***}$
Spatial lag \times 2006		$-8.84(2.14)^{***}$		$-9.04(2.26)^{***}$
Spatial lag \times 2010		$-8.81(2.13)^{***}$		$-9.13(2.24)^{***}$
Nr. Q elected $(t-1) \times 1978$, ,	-0.15(0.30)	-0.30(0.38)
Nr. Q elected $(t-1) \times 1982$			-0.44(0.32)	-0.57(0.39)
Nr. \dot{Q} elected $(t-1) \times 1986$			-0.50(0.31)	-0.54(0.39)
Nr. \circ elected $(t-1) \times 1990$			$-0.82 (0.30)^{**}$	$-0.81 (0.38)^*$
Nr. φ elected $(t-1) \times 1994$			$-0.91 (0.30)^{**}$	$-0.91\ (0.37)^*$
Nr. \bigcirc elected $(t-1) \times 1998$			$-0.95(0.30)^{**}$	$-0.90(0.37)^*$
Nr. \bigcirc elected $(t-1) \times 2002$			$-1.00(0.31)^{**}$	$-0.94(0.38)^*$
Nr. \circ elected $(t-1) \times 2006$			$-1.03(0.31)^{**}$	$-1.00(0.39)^{**}$
Nr. \bigcirc elected $(t-1) \times 2010$			$-0.93 (0.30)^{**}$	$-0.90(0.37)^*$
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No	No
Num. obs.	1531	1531	1531	1531
***n < 0.001, $**n < 0.01$, $*n < 0$.	05			

Table SI20: Replication of Table 1. (Negative binomial regression coefficients and standard errors adjusted for clustering on municipalities. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

DV: Nr. new female candidates				
(Intercept)	$-5.40 (1.21)^{***}$	$\frac{1}{-5.06 (1.47)^{***}}$	-1.68 (8.11)	
(Intercept)				
Spatial lag	44.25 (11.95)***	43.64 (12.14)***	-67.85 (232.02)	
Nr. Q elected $(t-1)$	0.63 (0.61)	$1.75 (0.74)^*$	0.07 (0.21)	
Nr. Q incumbent cand. $(t-1)$	$-0.60(0.06)^{***}$	0.14 (0.00)***	$-0.44 (0.14)^{**}$	
Nr. σ' incumbent cand. $(t-1)$	$-0.16 (0.03)^{***}$	$-0.14 (0.03)^{***}$	$-0.24 (0.05)^{***}$	
Nr. Q cand. $(t-1)$	-0.03(0.05)	-0.04 (0.07)	0.00 (0.09)	
Nr. seats	0.03 (0.04)	0.02 (0.05)	0.04 (0.08)	
Total nr. candidates	0.20 (0.02)***	0.18 (0.02)***	$0.27 (0.03)^{***}$	
Spatial lag \times 1978	$-33.19 (12.40)^{**}$	$-32.91 (12.57)^{**}$	76.57 (232.50)	
Spatial lag \times 1982	$-41.60 (12.11)^{***}$	$-41.20 (12.28)^{***}$	76.06 (232.30)	
Spatial lag \times 1986	$-41.92 (12.01)^{***}$	$-41.59 (12.19)^{***}$	$69.55 \ (232.07)$	
Spatial lag \times 1990	$-43.10 (11.97)^{***}$	$-42.19 (12.15)^{***}$	$68.45\ (232.00)$	
Spatial lag \times 1994	$-43.83 (11.95)^{***}$	$-43.58 (12.13)^{***}$	$69.83\ (232.00)$	
Spatial lag \times 1998	$-43.95 (11.97)^{***}$	$-42.51 (12.19)^{***}$	$67.67\ (232.00)$	
Spatial lag \times 2002	$-45.31 (11.97)^{***}$	$-44.15 (12.17)^{***}$	$66.14\ (231.98)$	
Spatial lag \times 2006	$-44.53 (11.98)^{***}$	$-43.91 (12.20)^{***}$	$68.41\ (231.96)$	
Spatial lag \times 2010	$-44.86 (11.98)^{***}$	$-44.37 (12.19)^{***}$	$66.82\ (232.02)$	
Nr. Q elected $(t-1) \times 1978$	-0.59(0.72)	-1.36(1.04)	-14.48 (1026.12)	
Nr. Q elected $(t-1) \times 1982$	-0.69(0.68)	$-1.62 (0.80)^*$	-15.05 (1373.54)	
Nr. Q elected $(t-1) \times 1986$	-0.38(0.64)	-1.46(0.77)	0.55 (0.62)	
Nr. Q elected $(t-1) \times 1990$	-0.57 (0.63)	$-1.58 (0.77)^*$	0.17(0.36)	
Nr. Q elected $(t-1) \times 1994$	-0.65(0.62)	$-1.65 (0.75)^*$	0.03(0.34)	
Nr. Q elected $(t-1) \times 1998$	-0.55(0.62)	$-1.78 (0.75)^*$	0.13(0.26)	
Nr. Q elected $(t-1) \times 2002$	-0.48(0.62)	$-1.76 (0.76)^*$	0.08(0.26)	
Nr. Q elected $(t-1) \times 2006$	-0.57(0.62)	$-1.65 (0.76)^*$	-0.22(0.24)	
Nr. Q elected $(t-1) \times 2010$	-0.63(0.62)	$-1.86 (0.75)^*$		
Connectivity matrix	All others	All others	All others	
Unit fixed effects	No	No	No	
Nr. Q incumbent cand.	≥ 0	0	> 0	
Deviance	1099.41	623.48	443.59	
Num. obs.	1531	964	567	
-***p < 0.001, **p < 0.01, *p < 0.01	05			

Table SI21: Replication of Table SI4, with an alternative connectivity matrix (all other municipalities, weighted by driving distance). (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DV: N	r. new female cano	lidates
(Intercept)	$-1.94 (0.26)^{***}$	$\frac{-1.98 (0.26)^{***}}{}$	$\frac{-1.38 (1.66)}{}$
Spatial lag	$11.47 (2.51)^{***}$	$11.87 (2.54)^{***}$	-6.93 (26.13)
Nr. Q elected $(t-1)$		$\frac{11.07}{2.04}$	` '
. ,	0.50 (0.60)	$2.07 (0.73)^{**}$	0.16 (0.18)
1978	-0.21 (0.40)	-0.26 (0.42)	14.17 (637.73)
1982	0.57 (0.34)	0.54 (0.35)	14.13 (902.10)
1986	$0.90 (0.32)^{**}$	0.91 (0.34)**	0.00 (1.82)
1990	$1.33 (0.31)^{***}$	1.40 (0.33)***	-0.09 (1.75)
1994	1.78 (0.33)***	1.81 (0.35)***	0.07(1.73)
1998	$1.32 (0.38)^{***}$	0.95 (0.52)	0.62(1.70)
2002	$1.43 (0.45)^{**}$	$1.38 (0.59)^*$	0.20(1.75)
2006	$0.95 \; (0.51)$	$1.18\ (0.65)$	-0.13(1.78)
2010	$1.24 (0.53)^*$	$0.90 \; (0.68)$	0.47(1.79)
Spatial lag \times 1978	$-8.18 (2.68)^{**}$	$-8.38 (2.73)^{**}$	7.69(26.31)
Spatial lag \times 1982	$-10.18 (2.60)^{***}$	$-10.31 (2.64)^{***}$	$7.51\ (26.21)$
Spatial lag \times 1986	$-10.32(2.54)^{***}$	$-10.59 (2.58)^{***}$	$7.91\ (26.15)$
Spatial lag \times 1990	$-10.74(2.52)^{***}$	$-11.17(2.56)^{***}$	7.72(26.14)
Spatial lag \times 1994	$-10.97(2.52)^{***}$	$-11.34(2.56)^{***}$	7.72(26.14)
Spatial lag \times 1998	$-11.03(2.52)^{***}$	$-10.92 (2.57)^{***}$	7.02(26.13)
Spatial lag \times 2002	$-11.37(2.53)^{***}$	$-11.53 (2.57)^{***}$	6.93(26.13)
Spatial lag \times 2006	$-10.75 (2.53)^{***}$	$-11.23 (2.59)^{***}$	7.67(26.14)
Spatial lag \times 2010	$-11.02(2.53)^{***}$	$-11.17(2.58)^{***}$	7.05(26.14)
Nr. Q elected $(t-1) \times 1978$	-0.81(0.71)	-1.91(1.03)	-14.33(637.72)
Nr. Q elected $(t-1) \times 1982$	-0.61(0.67)	$-1.79(0.80)^*$	-14.35(902.09)
Nr. Q elected $(t-1) \times 1986$	-0.34(0.62)	$-1.57(0.76)^*$	0.07 (0.63)
Nr. \circ elected $(t-1) \times 1990$	$-0.70\ (0.62)$	$-1.98 (0.76)^{**}$	$0.02\ (0.36)$
Nr. \bigcirc elected $(t-1) \times 1994$	-0.52(0.61)	$-1.75\ (0.75)^*$	0.22(0.31)
Nr. Q elected $(t-1) \times 1998$	$-0.55\ (0.61)$	$-1.95(0.75)^{**}$	0.04(0.25)
Nr. Q elected $(t-1) \times 2002$	$-0.39\ (0.61)$	$-1.87(0.76)^*$	$0.26\ (0.25)$
Nr. $\stackrel{\tau}{\circ}$ elected $(t-1)\times 2006$	-0.52(0.61)	$-1.89 (0.76)^*$	$0.01\ (0.24)$
Nr. $\stackrel{\tau}{\circ}$ elected $(t-1)\times 2010$	-0.48(0.61)	$-1.69(0.74)^*$	()
Connectivity matrix	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No
Nr. Q incumbent cand.	≥ 0	0	> 0
Deviance	1463.21	748.55	598.09
Num. obs.	1538	970	568
-***p < 0.001, **p < 0.01, *p <	0.05		

Table SI22: Replication of Table SI4, without control variables. (Poisson regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election.)

	$\text{DV} \cdot \text{N}_r$	new female cand	idates
(Intercept)	$\frac{-4.27 (0.94)^{***}}{-4.27 (0.94)^{***}}$	$\frac{1}{-3.93 (1.18)^{***}}$	-2.95 (1.63)
` - /	-4.27 (0.94) 9.79 (9.99)***	-3.93 (1.16)	
Spatial lag	8.72 (2.28)***	9.19 (2.33)***	-16.46 (13.81)
Nr. Q elected $(t-1)$	0.44 (0.69)	1.83 (0.21)***	0.06 (0.17)
Nr. Q incumbent cand. $(t-1)$	$-0.60 (0.06)^{***}$	0.10 (0.00)***	$-0.42 (0.11)^{***}$
Nr. σ incumbent cand. $(t-1)$	$-0.16 (0.02)^{***}$	$-0.13 (0.02)^{***}$	$-0.24 (0.04)^{***}$
Nr. Q cand. $(t-1)$	-0.02 (0.04)	-0.04 (0.05)	0.01 (0.08)
Nr. seats	0.02(0.04)	0.00(0.05)	0.04(0.06)
Total nr. candidates	$0.20 (0.02)^{***}$	$0.18 (0.02)^{***}$	$0.27 (0.03)^{***}$
Spatial lag \times 1978	$-5.98 (2.41)^*$	$-6.40(2.47)^{**}$	$17.81\ (14.02)$
Spatial lag \times 1982	$-7.78(2.39)^{**}$	$-8.10(2.41)^{***}$	$16.93\ (13.71)$
Spatial lag \times 1986	$-8.07 (2.28)^{***}$	$-8.60(2.37)^{***}$	$16.78\ (13.90)$
Spatial lag \times 1990	$-8.38(2.27)^{***}$	$-8.83(2.32)^{***}$	$16.86\ (13.76)$
Spatial lag \times 1994	$-8.56(2.31)^{***}$	$-9.07(2.37)^{***}$	16.89(13.84)
Spatial lag \times 1998	$-8.61 (2.30)^{***}$	$-8.64(2.33)^{***}$	$16.38\ (13.79)$
Spatial lag \times 2002	$-8.91 (2.30)^{***}$	$-9.32(2.37)^{***}$	16.27(13.79)
Spatial lag \times 2006	$-8.61(2.31)^{***}$	$-9.11(2.37)^{***}$	16.82 (13.80)
Spatial lag \times 2010	$-8.73(2.28)^{***}$	$-9.30(2.35)^{***}$	16.35 (13.99)
Nr. Q elected $(t-1) \times 1978$	-0.42(0.75)	$-1.48(0.68)^*$	$-14.31(0.79)^{***}$
Nr. Q elected $(t-1) \times 1982$	-0.50(0.70)	$-1.70 (0.30)^{***}$	$-14.66(0.91)^{***}$
Nr. Q elected $(t-1) \times 1986$	-0.19(0.73)	$-1.53(0.29)^{***}$	0.55(0.42)
Nr. Q elected $(t-1) \times 1990$	-0.38(0.68)	$-1.64 (0.25)^{***}$	0.13(0.29)
Nr. \dot{Q} elected $(t-1) \times 1994$	-0.45(0.69)	$-1.73 (0.22)^{***}$	0.03(0.28)
Nr. Q elected $(t-1) \times 1998$	$-0.36\ (0.67)$	$-1.90 (0.22)^{***}$	$0.15\ (0.20)$
Nr. \bigcirc elected $(t-1) \times 2002$	-0.29(0.68)	$-1.83 (0.22)^{***}$	0.05(0.21)
Nr. \dot{Q} elected $(t-1) \times 2006$	$-0.39\ (0.69)$	$-1.74 (0.28)^{***}$	-0.24(0.21)
Nr. \dot{Q} elected $(t-1) \times 2010$	-0.44(0.70)	$-1.93 (0.23)^{***}$,
Connectivity matrix	Closest 20	Closest 20	Closest 20
Unit fixed effects	No	No	No
Nr. Q incumbent cand.	≥ 0	0	> 0
Num. obs.	$\frac{-}{1531}$	964	567
*** $p < 0.001, **p < 0.01, *p < 0.01$)5		

Table SI23: Replication of Table SI4. (Poisson regression coefficients and standard errors adjusted for clustering on municipalities. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DV N	1 1:1 /		
(T	DV: Nr. new female candidates			
(Intercept)	-4.28 (1.11)***	-4.12 (1.37)**		
Spatial lag	8.78 (2.61)***	9.23 (2.68)***		
Nr. Q elected $(t-1)$	0.47(0.61)	$1.80 (0.74)^*$		
Nr. Q incumbent cand. $(t-1)$	$-0.60 (0.06)^{***}$	als als als		
Nr. σ incumbent cand. $(t-1)$	$-0.16 (0.03)^{***}$	$-0.14 (0.03)^{***}$		
Nr. Q cand. $(t-1)$	-0.03 (0.05)	-0.05 (0.07)		
Nr. seats	0.02(0.04)	$0.01\ (0.05)$		
Total nr. candidates	$0.20 (0.02)^{***}$	$0.18 (0.02)^{***}$		
Spatial lag \times 1978	$-6.00(2.73)^*$	$-6.37(2.80)^*$		
Spatial lag \times 1982	$-7.82(2.67)^{**}$	$-8.10(2.74)^{**}$		
Spatial lag \times 1986	$-8.09(2.62)^{**}$	$-8.57(2.69)^{**}$		
Spatial lag \times 1990	$-8.42(2.61)^{**}$	$-8.88(2.67)^{***}$		
Spatial lag \times 1994	$-8.60(2.60)^{***}$	$-9.08(2.66)^{***}$		
Spatial lag \times 1998	$-8.64(2.61)^{***}$	$-8.72(2.69)^{**}$		
Spatial lag \times 2002	$-8.93(2.61)^{***}$	$-9.34(2.69)^{***}$		
Spatial lag \times 2006	$-8.63(2.61)^{***}$	$-9.17(2.69)^{***}$		
Spatial lag \times 2010	$-8.74(2.61)^{***}$	$-9.24(2.69)^{***}$		
Nr. Q elected $(t-1) \times 1978$	-0.45(0.71)	-1.41(1.04)		
Nr. \mathcal{Q} elected $(t-1) \times 1982$	-0.53(0.67)	$-1.65(0.80)^*$		
Nr. $\stackrel{\tau}{Q}$ elected $(t-1)\times 1986$	-0.23(0.63)	-1.51(0.77)		
Nr. $\stackrel{\tau}{Q}$ elected $(t-1)\times 1990$	$-0.41\ (0.62)$	$-1.60(0.77)^*$		
Nr. $\stackrel{\tau}{\circ}$ elected $(t-1)\times 1994$	-0.47(0.61)	$-1.68(0.75)^*$		
Nr. Q elected $(t-1) \times 1998$	-0.38(0.61)	$-1.86 (0.75)^*$		
Nr. \mathcal{Q} elected $(t-1) \times 2002$	-0.32(0.61)	$-1.81(0.76)^*$		
Nr. $\stackrel{\tau}{\circ}$ elected $(t-1)\times 2006$	$-0.41\ (0.61)$	$-1.70(0.76)^*$		
Nr. $\stackrel{\tau}{\circ}$ elected $(t-1)\times 2010$	-0.46(0.61)	$-1.91(0.75)^*$		
Connectivity matrix	Closest 20	Closest 20		
Unit fixed effects	No	No		
Nr. Q incumbent cand.	≥ 0	0		
Num. obs.	$\frac{-}{1531}$	964		
***p < 0.001, **p < 0.01, *p < 0.01	05			

Table SI24: Replication of Table SI4. (Negative binomial regression coefficients and standard errors. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	TOTAL OF	1 1:1 .	
(7	DV: Nr. new female candidates		
(Intercept)	$-4.28 (0.94)^{***}$	$-4.12 (1.17)^{***}$	
Spatial lag	8.78 (2.28)***	9.23 (2.33)***	
Nr. Q elected $(t-1)$	0.47(0.67)	1.80 (0.21)***	
Nr. Q incumbent cand. $(t-1)$	$-0.60 (0.06)^{***}$		
Nr. \circlearrowleft incumbent cand. $(t-1)$	$-0.16 (0.02)^{***}$	$-0.14 (0.02)^{***}$	
Nr. Q cand. $(t-1)$	-0.03(0.04)	-0.05 (0.05)	
Nr. seats	0.02(0.04)	$0.01\ (0.05)$	
Total nr. candidates	$0.20 (0.02)^{***}$	$0.18 (0.02)^{***}$	
Spatial lag \times 1978	$-6.00(2.40)^*$	$-6.37 (2.46)^{**}$	
Spatial lag \times 1982	$-7.82(2.39)^{**}$	$-8.10(2.41)^{***}$	
Spatial lag \times 1986	$-8.09(2.27)^{***}$	$-8.57 (2.35)^{***}$	
Spatial lag \times 1990	$-8.42(2.27)^{***}$	$-8.88(2.32)^{***}$	
Spatial lag \times 1994	$-8.60(2.31)^{***}$	$-9.08(2.36)^{***}$	
Spatial lag \times 1998	$-8.64(2.29)^{***}$	$-8.72(2.34)^{***}$	
Spatial lag \times 2002	$-8.93(2.30)^{***}$	$-9.34(2.36)^{***}$	
Spatial lag \times 2006	$-8.63(2.30)^{***}$	$-9.17(2.37)^{***}$	
Spatial lag \times 2010	$-8.74(2.28)^{***}$	$-9.24(2.34)^{***}$	
Nr. Q elected $(t-1) \times 1978$	-0.45(0.74)	$-1.41(0.67)^*$	
Nr. Q elected $(t-1) \times 1982$	$-0.53\ (0.68)$	$-1.65 (0.29)^{***}$	
Nr. Q elected $(t-1) \times 1986$	-0.23(0.70)	$-1.51 (0.30)^{***}$	
Nr. Q elected $(t-1) \times 1990$	$-0.41\ (0.66)$	$-1.60 (0.25)^{***}$	
Nr. Q elected $(t-1) \times 1994$	-0.47(0.67)	$-1.68 (0.21)^{***}$	
Nr. Q elected $(t-1) \times 1998$	-0.38(0.65)	$-1.86 (0.22)^{***}$	
Nr. Q elected $(t-1) \times 2002$	-0.32(0.66)	$-1.81 (0.22)^{***}$	
Nr. Q elected $(t-1) \times 2006$	-0.41(0.67)	$-1.70 (0.27)^{***}$	
Nr. Q elected $(t-1) \times 2010$	-0.46(0.68)	$-1.91 (0.23)^{***}$	
Connectivity matrix	Closest 20	Closest 20	
Unit fixed effects	No	No	
Nr. Q incumbent cand.	≥ 0	0	
Num. obs.	$1\overline{531}$	964	
***p < 0.001, **p < 0.01, *p < 0.01	05		
, , , , , , , , , , , , , , , , , , ,			

Table SI25: Replication of Table SI4. (Negative biomial regression coefficients and standard errors adjusted for clustering on municipalities. "Spatial lag" refers to the average number of men elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.)

	DV: Nr. wo	men elected	DV: Vote ratio	
(Intercept)	$-3.60 (1.12)^{**}$	$-6.98 (1.54)^{***}$	$0.50 (0.20)^*$	$0.50 (0.19)^{**}$
Spatial lag	$40.03 (14.30)^{**}$	$18.37\ (17.66)$	3.39(2.39)	4.04(2.32)
Nr. Q elected $(t-1)$	0.06(0.05)		0.02(0.01)	
Nr. Q elected $(t-1) > 0$		0.08(0.10)		$0.08 (0.02)^{***}$
Nr. Q incumbent cand. $(t-1)$	$0.14 (0.05)^{**}$		$0.09 (0.01)^{***}$	
Nr. Q incumbent cand. $(t-1) > 0$		$0.25 (0.07)^{***}$		$0.12 (0.01)^{***}$
Nr. σ incumbent cand. $(t-1)$	$-0.06 (0.02)^*$	$-0.10 (0.02)^{***}$	$-0.01 (0.00)^{**}$	$-0.01 (0.00)^{**}$
Nr. Q cand.	$0.36 (0.03)^{**}$	*	$-0.02(0.01)^*$	0.00(0.01)
Nr. Q cand. > 0		$5.70 (1.00)^{***}$		
Nr. seats	$0.13 (0.03)^{**}$	* 0.18 (0.03)***	$0.02 (0.01)^{***}$	$0.02 (0.01)^{***}$
Spatial lag \times 1978	-26.53(14.75)	-15.35(18.17)	-1.66(2.45)	-2.47(2.37)
Spatial lag \times 1982	$-33.31 (14.43)^*$	-16.69(17.81)	-2.29(2.41)	-3.21(2.33)
Spatial lag \times 1986	$-36.71 (14.34)^*$	-18.32(17.71)	-3.15(2.40)	-3.85(2.32)
Spatial lag \times 1990	$-38.37 (14.31)^{**}$		-3.30(2.39)	-4.06(2.32)
Spatial lag \times 1994	$-40.48 (14.30)^{**}$		-3.34(2.39)	-4.09(2.32)
Spatial lag \times 1998	$-40.35 (14.30)^{**}$	-18.09(17.66)	-3.47(2.40)	-4.04(2.32)
Spatial lag \times 2002	$-40.34 (14.30)^{**}$	$-18.71\ (17.67)$	-3.36(2.40)	-3.98(2.32)
Spatial lag \times 2006	$-40.76 (14.30)^{**}$	$-19.31\ (17.67)$	-3.49(2.40)	-4.18(2.32)
Spatial lag \times 2010	$-40.13 (14.31)^{**}$	$-18.61\ (17.67)$	-3.28(2.40)	-3.93(2.32)
Connectivity matrix	All others	All others	All others	All others
Model	Poisson	Poisson	OLS	OLS
Deviance	568.29	322.40		
$Adj. R^2$			0.30	0.34
Num. obs.	1538	1538	1049	1049
$\frac{***_{n} < 0.001 **_{n} < 0.01 *_{n} < 0.05}{*}$				

Table SI26: Replication of Table SI7: Poisson and OLS regression coefficients and standard errors, with an alternative operationalization of the connectivity matrix (W) (inverse of travel time by car between all pairs of municipalities) "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.

	DV: Best woman	/ elec. threshold	DV: Avg. wom	nen / avg. men
(Intercept)	0.38 (0.27)	0.39(0.27)	$0.50 (0.23)^*$	$0.53 (0.23)^*$
Spatial lag	1.52(0.80)	$1.63 (0.78)^*$	0.44(0.68)	0.42(0.68)
Nr. Q elected $(t-1)$	0.02(0.02)		$0.03 (0.01)^*$	
Nr. Q elected $(t-1) > 0$, ,	$0.10 (0.02)^{***}$, ,	$0.07 (0.02)^{***}$
Nr. Q incumbent cand. $(t-1)$	$0.09 (0.02)^{***}$	` ,	$0.10 (0.01)^{***}$,
Nr. Q incumbent cand. $(t-1) > 0$, ,	$0.13 (0.02)^{***}$,	$0.12 (0.02)^{***}$
$Nr. \ \sigma $ incumbent cand. $(t-1)$	$-0.04 (0.01)^{***}$	$-0.04(0.01)^{***}$	$-0.03 (0.01)^{***}$	$-0.03 (0.01)^{***}$
Nr. Q cand.	0.01(0.01)	$0.02 (0.01)^*$	$-0.11(0.01)^{***}$	$-0.09(0.01)^{***}$
Nr. seats	$0.06 (0.01)^{***}$	$0.06 (0.01)^{***}$	$0.03 (0.01)^{***}$	$0.03 (0.01)^{***}$
Spatial lag \times 1978	-1.04(0.82)	-1.19(0.80)	-0.01(0.70)	-0.02(0.70)
Spatial lag \times 1982	-1.07(0.81)	-1.27(0.79)	-0.15(0.69)	-0.19(0.68)
Spatial lag \times 1986	-1.52(0.80)	$-1.64 (0.78)^*$	-0.36(0.68)	-0.35(0.68)
Spatial lag \times 1990	-1.53(0.80)	$-1.68 (0.78)^*$	-0.47(0.68)	-0.47(0.68)
Spatial lag \times 1994	-1.54(0.80)	$-1.69 (0.78)^*$	-0.45(0.68)	-0.46(0.68)
Spatial lag \times 1998	$-1.58(0.80)^*$	$-1.67(0.78)^*$	-0.46(0.68)	-0.41(0.68)
Spatial lag \times 2002	-1.52(0.80)	$-1.62 (0.78)^*$	-0.39(0.68)	-0.35(0.68)
Spatial lag \times 2006	-1.55(0.80)	$-1.65 (0.78)^*$	-0.47(0.68)	-0.45(0.68)
Spatial lag \times 2010	-1.55(0.80)	$-1.65(0.78)^*$	-0.44(0.68)	-0.41(0.68)
Connectivity matrix	Closest 20	Closest 20	Closest 20	Closest 20
Model	OLS	OLS	OLS	OLS
$Adj. R^2$	0.23	0.27	0.23	0.23
Num. obs.	1048	1048	1049	1049
**** < 0.001 *** < 0.01 ** < 0.05				

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table SI27: Replication of Table SI7: OLS regression coefficients and standard errors. First two columns: the dependent variable is the ratio of the votes received by the best woman and the votes received by the worst elected person; third and fourth column: the dependent variable is the ratio of the average votes received by women divided by the average votes received by men. "Spatial lag" refers to the average number of women elected in other municipalities in the previous election. Year dummies and full set of control variables included but not shown.